Clogging of piezometer filters as indicator of impaired permeability of rock-fill embankments

Authors: Maksimov D.A.

The article reviews the mechanism of permeability irregularity in a rock-fill embankment body as a result of removal of particles of the structure due to imbalance of confining and shear forces applied to these particles. Since the particles displaced by the seepage flow are deposited on filters of piezometers, it is assumed that clogging of the filters can serve as an indicator of the initiation and development of local permeability irregularity in rock-fill hydraulic structures. To confirm this assumption, the author has analyzed the integrated survey data on dams of tailings storage at a dressing plant in the Murmansk Region. The reconnaissance survey has detected a clogged and silted piezometer. Express pouring has shown impaired permeability of this piezometer as compared with the selected reference piezometer. GPR surveys of the dam have revealed heterogeneity zones below the level of seepage water, which allows relating the heterogeneities with permeation processes in the body of the hydraulic structure. The visual observation has found out a water outlet at the bottom of the dam, in the cross section with the clogged piezometer. The outlet was accompanied by suffosion removal of particles of the structure material. Alongside with the local permeation irregularity, suffusion caused settling of particles on the piezometer filter, with its resultant clogging and siltation. Thus, the growth of the local permeability irregularity is accompanied with clogging of filter of piezometer. So, the piezometer filter clogging can be considered as an indicator of impaired permeability and its development in the body of a rock-fill hydraulic structure.

Keywords: hydraulic structure, dam, clogging, piezometer, permeation, suffusion, visual observation, georadar.
For citation:

Maksimov D. A. Clogging of piezometer filters as indicator of impaired permeability of rock-fill embankments. MIAB. Mining Inf. Anal. Bull. 2021;(5—1):270—279. [In Russ]. DOI: 10.25018/0236_1493_2021_51_0_270.

Acknowledgements:
Issue number: 5
Year: 2021
Page number: 270-279
ISBN: 0236-1493
UDK: 626-1/-2:626.134’212
DOI: 10.25018/0236_1493_2021_51_0_270
Article receipt date: 27.01.2021
Date of review receipt: 25.03.2021
Date of the editorial board′s decision on the article′s publishing: 10.04.2021
About authors:

Maksimov D. A., Scientific researcher, Mining Institute Kola Science Centre RAS. Apatity, Russia, maximoffda@gmail.com, Mining Institute — Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences», Apatity, Russia.

For contacts:
Bibliography:

1 Dasher E. D. Dams are coming down, but not always by choice: the geography of Texas dams, Dam Failures, and Dam Removals. Texas water journal, Vol. 11, no. 1, 2020. pp. 89—129

2 Adamo N., AI-Ansari N., Sissakian V. K., Laue J. Dam Safety: The Question of Tailings Dams. Journal of Earth Sciences and Geotechnical Engineering, Vol.11, no.1, 2020, pp. 1—26 (DOI: 10.47260/jesge/1111)

3 Akhmetov E. M., Asemov K. M., Zhumataeva M. O. Research of accidents of hydraulic structures and safety control methods. Bulletin of the Tomsk Polytechnic University. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2020. no. 3. Vol. 331. pp. 70—83. (DOI: 10.18799/24131830/2020/4/2595) [In Russ]

4 Melnikov N. N., Kalashnik A. I., Kalashnik N. A., Zaporozhets D. V. The use of modern methods for complex studies of the hydrotechnical structures of the Barents sea region. Vestnik murmanskogo gosudarstvennogo tekhnicheskogo universiteta. 2017. no. 1—1. Vol. 20. pp. 13—20 (DOI: 10.21443/1560—9278—2017—20—1/1—13—20 [In Russ]

5 Azam S., Li Q. Tailings Dam Failures: A Review of the Last One Hundred Years. Geotechnical News. 2010. pp. 50—53.

6 Hui L., Haitao M. Application of Ground Penetrating Radar in Dam Body Detection. Procedia Engineering, no. 26, 2011, pp. 1820—1826 (DOI: 10.1016/j.proeng.2011.11.2372).

7 Tomecka-Suchoń S. Ground penetrating radar use in flood prevention. Acta Geophysica, no. 67(3), 2019, pp. 1955—1965 (DOI: 10.1007/s11600—019—00353—8).

8 Anchuela Ó, Frongia P., Di Gregorio F., Casas-Sainz A. Internal characterization of embankment dams using ground penetrating radar (GPR) and thermographic analysis: a case study of the Medau Zirimilis Dam (Sardinia, Italy). Engineering Geology, no. 237, 2018, pp. 129—139 (DOI: 10.1016/j.enggeo.2018.02.015).

9 Adamo N., AI-Ansari N., Sissakian V. K., Laue J., Knutsson S. Dam Safety: Use of instrumentation in Dams. Journal of Earth Sciences and Geotechnical Engineering, Vol.11, no.1, 2020, pp. 145—202 (DOI: 10.47260/jesge/1115).

10 Adamo N., AI-Ansari N., Sissakian V. K., Laue J., Knutsson S. Dam Safety: Monitoring of Tailings Dams and Safety Reviews. Journal of Earth Sciences and Geotechnical Engineering, Vol.11, no.1, 2020, pp. 249—289 (DOI: 10.47260/jesge/1117).

11 Maksimov D. A. Indicators of the presence of local disturbances of filtration stability in the body of the embankment hydraulic structure. Problemy nedropol’zovaniya. 2018. no. 2 (17). pp. 98—105. (DOI: 10.25635/2313—1586.2018.02.098) [In Russ]

12 Kalashnik  A.  I.,  Zaporozhets  D.  V.,  Lebedik  A.  V.  Monitoring  stroitel’stva i ekspluatacii ograzhdayushchih damb hvostohranilishcha GOK «Olenij ruchej» [Monitoring of construction and operation of the enclosing dams of the Oleniy Ruchey tailings pond]. Monitoring of natural and mining-induced processes in mining operations: All-Russian scientific and engineering conference with international participation, 24—27 September 2013. Apatity, 2013. Pp. 188—193. [In Russ]

13 Dyakov A. Yu. GPR as a tool for solving mining tasks. Mezhdunarodnyj zhurnal gumanitarnyh i estestvennyh nauk. 2019. no. 12—1(39). pp. 64—68. (DOI: 10.24411/2500— 1000—2019—11846). [In Russ]

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.