Mixed-type high-rate sampling in ore processing

Calculation of number of sampling points at processing plants is an indeterminate
problem as the inputs of the calculation formula are assumed at random. The variance of the point samples is only found experimentally as its analytical determination is possible only in lump sampling. The permissible sampling error can be estimated from calculating the total random sampling error. It is possible to do without such calculation using a sampler which collects certainly more samples than is required for the calculation. In complex sampling conditions at processing plants for nonferrous metal ores, the number of point samples per shift is not more than 4900. A sampler collecting more point samples becomes a universal tool for sampling at any point at a processing plant. The designed and introduced samplers for lump and slurry products can collect 21 600 samples per shift 12 hours long. Such sampler consists of three machine units: a slot-like reducer of the primary flow by longitudinal sections, a sector reducer of the secondary flow and a disk-like reducer of the tertiary flow. The final sample of a preset mass is obtained at a relative random error not higher than 0.5% in this case. The sampling stations for slurry flows to 2000 m3/h and granular products to 24 m3/h to 80 mm in size are designed and put into operation. The new equipment ensures reduction in the discrepancy of commodity balances by 1.5–2 times as well as enhances efficiency of sampling by 5 times.

 

Keywords: number of point samples, high-rate sampling, standard sampling, coefficient of variation, sampling station, disk-like reducer, random error, probable systematic error, lump sampling, commodity balance discrepancy, mixed-type preparation and sampling method, parallel sampling.
For citation:

Kozin V. Z., Komlev A. S. Mixed-type high-rate sampling in ore processing. MIAB. Mining Inf. Anal. Bull. 2022;(5):142-153. [In Russ]. DOI: 10.25018/0236_1493_2022_5_0_142.

Acknowledgements:
Issue number: 5
Year: 2022
Page number: 142-153
ISBN: 0236-1493
UDK: 622.7.09:620.113
DOI: 10.25018/0236_1493_2022_5_0_142
Article receipt date: 08.11.2021
Date of review receipt: 14.03.2022
Date of the editorial board′s decision on the article′s publishing: 10.04.2022
About authors:

V.Z. Kozin1, Dr. Sci. (Eng.), Professor, Head of Chair, Dean of Faculty of Mining and Mechanics, e-mail: gmf.dek@ursmu.ru, ORCID ID: 0000-0001-7184-919X,
A.S. Komlev1, Cand. Sci. (Eng.), Senior Researcher, e-mail: tails2002@inbox.ru, ORCID ID: 0000-0002-2484-2726,
1 Ural State Mining University, 620144, Ekaterinburg, Russia.

 

For contacts:

A.S. Komlev, e-mail: tails2002@inbox.ru.

Bibliography:

1. Kozin V. Z. Oprobovanie mineral'nogo syr'ya [Testing of mineral raw materials], Ekaterinburg, Izd-vo UGGU, 2011, 316 p.

2. Glazatov A. N., Tsemekhman L. Sh. Development of methods for testing raw materials and products for the content of non-ferrous and precious metals at processing and metallurgical enterprises. Part 1. Non-ferrous Metals. 2015, no. 10, pp. 54—59. [In Russ]. DOI: 10.17580/ tsm.2015.10.09.

3. Bondarenko A. V., Zakharov P. A. Shevelev E. S. Creation of an automatic system for testing pulp products for mining and processing enterprises. Gornyi Zhurnal. 2016, no. 11, pp. 75— 79. [In Russ]. DOI: 10.17580/gzh.2016.11.14.

4. Nikitenko E. M., Evtushenko M. B., Yushina T. I. Improvement of assay analysis of ores of the Degdekansky deposit. Obogashchenie Rud. 2019, no. 1, pp. 34—38. [In Russ]. DOI: 10.17580/or.2019.01.05.

5. Gy P. Sampling of particulate material: Theory and practice. Elsevier: Amsterdam, 1982, 431 p.

6. Engström K., Esbensen K. H. Evaluation of sampling systems in iron concentrating and pelletizing processes — Quantification of Total Sampling Error (TSE) vs. process variation. Minerals Engineering. 2018, vol. 116, pp. 203—208.

7. Lotter N. O., Evans C. L., Engstom K. Sampling — A key tool in modern process mineralogy. Minerals Engineering. 2018, vol. 116, pp. 196—202. DOI: 10.1016/j.mineng.2017.07.013.

8. Napier-Munn T. J., Whiten W. J., Faramarzi F. Bias in manual sampling of rock particles. Minerals Engineering. 2020, vol. 153, article 106260.

9. Gleeson D. Getting to the core. International Mining. 2019, pp. 64—68.

10. Rozendal A., Le Rous S. G., du Plessis A., Philander C. Grade and product quality control by microCT scanning of the world class Namakwa Sands Ti-Zr placer deposit West Coast, South Africa: An orientation study. Minerals Engineering. 2018, vol. 116, pp. 152—162. DOI: 10.1016/j.mineng.2017.09.001.

11. Kozin V. Z., Komlev A. S. Calculation of the fundamental sampling error. MIAB. Mining Inf. Anal. Bull. 2021, no. 11-1, pp. 265—275. [In Russ]. DOI: 10.25018/0236_1493_2021_111_0_265.

12. Komlev A. S. Kombinirovannyy sposob otbora i sokrashcheniya prob mineral'nykh produktov: monografiya [Combined method of sampling and reduction of samples of mineral products: monograph] Ekaterinburg, izd-vo «Fort Dialog-Iset'», 2020, 216 p.

13. Batugin S. A., Tkach S. M. The sorting effect and the level of representativeness of geological samples during sampling and block assessment of reserves. MIAB. Mining Inf. Anal. Bull. 2007, no. 2, pp. 82—89. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.