Complex study of acoustoemission and thermomechanical effects in samples of rock salt at their cyclic deformation

The paper presents the results of uniaxial compression tests on rock salt specimens, involving successive load/unload cycles, with the maximum stress increasing from cycle to cycle. Changes in mechanical characteristics, infrared radiation (IR) variations, and acoustic emission (AE) were measured. The goal of the experiment was to study how the parameters of AE and IR radiations change during the process of rock deformation, modes of testing taken into account at that. The experimental time dependences of mechanical and physical parameters are analyzed, as well as relationships between mechanical parameters and physical characteristics. It is established that IR measurements can be used to study the effect of the loading history on the deformation behavior and strength characteristics of geomaterial specimens (the memory effect). Analysis of changes in the intensity of thermal radiation of geomaterials under cyclic loading suggests that it is possible to practically apply the discovered effects in combination with well-established techniques of quantitative estimation of stresses in rock masses, which are based on the acoustic emission and deformation memory effects.

Keywords: Underground gas storage, rock salt, cyclic loading, axial stresses, axial deformations, infrared radiation, acoustic emission, “memory” effect.
For citation:

Blokhin D. I., Kharchenko A. V. Complex study of acoustoemission and thermomechanical effects in samples of rock salt at their cyclic deformation. MIAB. Mining Inf. Anal. Bull. 2021;(4-1):129—137. [In Russ]. DOI: 10.25018/0236_1493_2021_41_0_129.

Acknowledgements:
Issue number: 4
Year: 2021
Page number: 129-137
ISBN: 0236-1493
UDK: 622.02:539.2
DOI: 10.25018/0236_1493_2021_41_0_129
Article receipt date: 01.02.2021
Date of review receipt: 19.02.2021
Date of the editorial board′s decision on the article′s publishing: 10.03.2021
About authors:

Blokhin D. I.1,2, Cand. Sci. (Eng.), dblokhin@yandex.ru;
Kharchenko A. V.2, Cand. Sci. (Eng.), av-kharchenko@yandex.ru;
1 National Research Technological University “MISiS”, Moscow, Russia;
2 Institute of Comprehensive Exploitation of Mineral Resources Russian Academy of Sciences, Moscow, Russia.

 

For contacts:
Bibliography:

1. Bogdanov Yu. M., Zhuravleva T. Yu., Sil’verstov L. K., Tavostin M. N. Investigation of Geomechanical Processes during Gas Injection and Extraction in Underground Gas Storage in Rock Salt, Gazovaya promyshlennost’. 2010, no. 6, pp. 72—75 [In Russ].

2. Bogdanov Yu. M., Zhuravleva T. Yu., Tavostin M. N., Kalinichenko I. V. Assessment of the convergence and service life of underground workings-tanks in rock salt in the UGS system, Gazovaya promyshlennost’. 2010, no. 7, pp. 55—58 [In Russ].

3. Zhigalkin V. M., Usol’tseva O. M., Semenov V. N., Tsoi P. A., Asanov V. A., Baryakh A. A., Pan’kov I. L., Toksarov V. N. Deformation of quasi-plastic salt rocks under different conditions of loading. Report I: Deformation of salt rocks under uniaxial compression. Journal of Mining Science, 2005, Vol. 41, no. 6, pp. 507—515. https://doi.org/10.1007/ s10913-006-0013-z.

4. Li W., Han Y., Wang T., Ma J. DEM micromechanical modeling and laboratory experiment on creep behavior of salt rock. Journal of Natural Gas Science and Engineering, 2017, Vol. 46, pp. 38—46. https://doi.org/10.1016/j.jngse.2017.07.013.

5. Chen J., Du C., Jiang D., Fan J., He Y. The mechanical properties of rock salt under cyclic loading-unloading experiments. Geomechanics and Engineering, 2016, Vol. 10, no. 3, pp. 325—334. DOI: 10.12989/gae.2016.10.3.325.

6. Liu J., Wang C., Pei J., Wang L., Xu H., Deng C. A New Testing Method for the Characterization of the Tension-Compression Cyclic Behavior of Rock Salt. Geotechnical Testing Journal, 2020, Vol. 43, no. 4, pp. 844—852. DOI: 10.1520/GTJ20180349

7. He M. M., Ren J., Su P., Li N., Chen Y. H. Experimental Investigation on Fatigue Deformation of Salt Rock. Soil Mechanics and Foundation Engineering, 2020, Vol. 56, no. 6, pp. 402 — 409. https://doi.org/10.1007/s11204—020—09622-x.

8. Zakharov V. N., Kubrin S. S., Feit G. N., Blokhin D. I. Determination of the stressstrain state of rocks in the development of coal seams that are dangerous for geo and gasdynamic phenomena. Ugol’. 2012. no. 10. pp. 34—36 [In Russ].

9. Sheinin V. I., Blokhin D. I. Features of thermomechanical effects in rock salt samples under uniaxial compression. Journal of Mining Science, 2012, Vol. 48, no. 1, pp. 39—45. https://doi.org/10.1134/S1062739148010054.

10. Bespal’ko A. A., Shtirc V. A., Yavorovich L. V., Chulkov A. O., Fedotov P. I. Infrared glow of wells and its physical modeling on rock samples under uniaxial force loading, Fundamental and applied issues of mining sciences. 2017, no. 3, pp. 16—20. [In Russ].

11. Lou Q., He X. Experimental study on infrared radiation temperature field of concrete uniaxial compression. Infrared Physics & Technology, 2018, Vol. 90, pp. 20—30. https://doi. org/10.1016/j.infrared.2018.01.033.

12. Sheinin V. I., Blokhin D. I., no.vikov E. A., Mudretsova L. V. Study of Limestone Deformation Stages on The Basis of Acoustic Emission and Thermomechanical Effects. Soil Mechanics and Foundation Engineering, 2020, Vol. 56, no. 6,pp. 398—401. https://doi. org/10.1007/s11204-020-09621-y.

13. Cao K., Ma L., Zhang D., Lai X., Zhang Z., Khan N. M. An experimental study of infrared radiation characteristics of sandstone in dilatancy process. International Journal of Rock Mechanics and Mining Sciences, 2020, Vol. 136, Article 104503. https://doi. org/10.1016/j.ijrmms.2020.104503

14. Lavrov A. V., Shkuratnik V. L., Filimonov Yu. L. Akustoemissionnyj effekt pamyati v gornyh porodah [Acoustic-emission memory effect in rocks], Moscow, MGGU, 2004, 456 p. [In Russ].

15. Lavrov A. Fracture-induced phenomena and memory effects in roks: a review, Strain, 2005, Vol. 41, no. 4, pp. 135 — 149. https://doi.org/10.1111/j.1475—1305.2005.00233.x

16. Meng Q., Chen Y., Zhang M., Han L., Pu H., Liu J. On the Kaiser effect of rock under cyclic loading and unloading conditions: insights from acoustic emission monitoring. Energies, 2019,Vol. 12, no. 17, Article 3255. doi:10.3390/en12173255

17. Panteleev I. A., Mubassarova V. A., Zaitsev A. V., Shevtsov N. I., Kovalenko Y. F., Karev V. I. Kaiser Effect in Sandstone in Polyaxial Compression with Multistage Rotation of an Assigned Stress Ellipsoid. Journal of Mining Science, 2020, Vol. 56, no. 3, pp. 370—377. https://doi.org/10.1134/S1062739120036653

18. Belyutyukov N. L. Features of Kaiser Effect Use to Estimate Stress State of the Rock, Gornoe Ekho. 2019, no. 3, pp. 24—31. [In Russ] https://doi.org/10.7242/echo.2019.3.7

19. Filimonov Y., Lavrov A., Shkuratnik V. Acoustic emission in rock salt: effect of loading rate. Strain, 2002, Vol. 38, pp. 157—159. DOI: 10.1046/j.1475-1305.2002.00022.x

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.