Integrated effect of size on ultimate compressive strength of rock samples

The ultimate compressive strength is a key physical property of rocks and is included in various designs and procedures. Despite general similarity of approaches to experimental determination of this value, there are yet some differences. This study reviews the current methods of rock compression testing in use in Russia and abroad. The foreign techniques conform with the first test variant of the Russian State Standard. At the same time, the differences lie in recommended geometrical parameters of test samples. The logarithmic function-based expression is obtained for determining an influence factor of difference between the actual height/diameter ratio of a rock sample in compression and the reference state standard-set value (2 to 1). Another exponential function-based expression determines an influence factor of deviation of a sample diameter from the reference value (42 mm). These expressions are used to derive a dependence integrating the effects of the sample diameter deviation and its height/diameter deviation from the reference parameters. The application of the dependence is illustrated. These results may be of use to experts engaged in foreign engineering projects.

Keywords: rocks, ultimate compressive strength, test methods, size effect, sample geometry factor, calculated dependences, correction factor, harmonization of engineering standards.
For citation:

Zhabin A. B., Polyakov A. V., Averin E. A., Linnik Yu. N., Linnik V. Yu. Integrated effect of size on ultimate compressive strength of rock samples. MIAB. Mining Inf. Anal. Bull. 2022;(8):5-13. [In Russ]. DOI: 10.25018/0236_1493_2022_8_0_5.

Issue number: 8
Year: 2022
Page number: 5-13
ISBN: 0236-1493
UDK: 622.023.23
DOI: 10.25018/0236_1493_2022_8_0_5
Article receipt date: 10.03.2022
Date of review receipt: 18.03.2022
Date of the editorial board′s decision on the article′s publishing: 10.07.2022
About authors:

A.B. Zhabin, Dr. Sci. (Eng.), Professor, e-mail:, Tula State University, 300012, Tula, Russia,
A.V. Polyakov, Dr. Sci. (Eng.), Engineer-Expert, LLC «Expertise of Industrial Safety», 300000, Tula, Russia, e-mail:,
E.A. Averin, Cand. Sci. (Eng.), Engineer-Designer, LLC «Skyratovsky Experimental Plant», 300911, Tula, Russia, e-mail:,
Yu.N. Linnik1, Dr. Sci. (Eng.), Professor, e-mail:,
V.Yu. Linnik1, Dr. Sci. (Econ.), Professor, e-mail:,
1 State University of Management, 109542, Moscow, Russia.

For contacts:

A.V. Polyakov, e-mail:


1. Zhabin A. B., Averin E. A., Polyakov A. V. Rock strength equivalent index. Russian Mining Industry. 2018, no. 5, pp. 112—115. [In Russ]. DOI: 10.30686/1609-9192-2018-5-141-112-115.

2. Zhabin A. B., Averin E. A., Polyakov A. V. Integrated assessment of the complexity of mining projects. Ugol'. 2017, no. 11, pp. 60—63. [In Russ]. DOI: 10.18796/0041-5790-201711-60-63.

3. Averin E., Zhabin A., Polyakov A., Linnik Y., Linnik V. Preliminary assessment of roadheaders efficiency based on empirical methods and index of equivalent rock strength. Mining of Mineral Deposits. 2019, vol. 13, no. 3, pp. 113—118. DOI: 10.33271/mining13.03.113.

4. Morozov I. A., Udarcev A. A., Pankov I. L. Laboratory deformation testing of salt rocks from the Gremyachinsk and Upper Kama deposits. MIAB. Mining Inf. Anal. Bull. 2020, no. 10, pp. 16–28. [In Russ]. DOI: 10.25018/0236-1493-2020-10-0-16-28.

5. Zakharov V. N., Linnik V. Yu., Linnik Yu. N., Zhabin A. B. Classification of coal seams by features of geological structure and characteristics of breaking. MIAB. Mining Inf. Anal. Bull. 2019, no. 5, pp. 5–12. [In Russ]. DOI: 10.25018/0236-1493-2019-05-0-5-12.

6. Nguyen Van Minh, Khazhyylai C. V., Umarov A. R., Yanbekov A. M. Effect of main rock mass parameters on initiation of tensile strain zones around openings at a depth greater than 1 km. MIAB. Mining Inf. Anal. Bull. 2021, no. 8, pp. 104–113. [In Russ]. DOI: 10.25018/0236_1493_2021_8_0_104.

7. The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. Ulusay R., Hudson J. A. (Eds.). Ankara, Turkey. 2007, 628 p.

8. Yilmaz Y., Eun J., Panahi S. S., Mousavi M. S. Effects of height-to-diameter ratio (H/D) for specimens with various water contents on unconfined compressive strength of a clayey soil. Engineering Geology. 2019, vol. 257, pp. 105—136. DOI: 10.1016/j.enggeo.2019.05.013.

9. Komurlu E. Loading rate conditions and specimen size effect on strength and deformability of rock materials under uniaxial compression. International Journal of Geo-Engineering. 2018, vol. 9, no. 1, pp. 17. DOI: 10.1186/s40703-018-0085-z.

10. Tsoi P. А., Usoltseva O. M., Persidskaya O. A., Semenov V. N., Sivolap B. B. Change in deformation modulus and strength of meta-siltstone depending on specimen size. Mining sciences: fundamental and applied issues. 2017, vol. 4, no. 2, pp. 187—190. [In Russ].

11. Tsoi P. A., Usol’tseva O. M. Use of Mohr’s circles for connection and model estimation of strength data of different-size rock samples. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2019, no. 2, pp. 23—29. [In Russ]. DOI: 10.15372/FTPRPI20170505.

12. Meng Q., Zhang M., Han L., Pu H., Li H. Effects of size and strain rate on the mechanical behaviors of rock specimens under uniaxial compression. Arabian Journal of Geosciences. 2016, vol. 9, no. 8, pp. 527. DOI: 10.1007/s12517-016-2559-7.

13. Tuncay E., Özcan N. T., Kalender A. An approach to predict the length-to-diameter ratio of a rock core specimen for uniaxial compression tests. Bulletin of Engineering Geology and the Environment. 2019, vol. 78, no. 7, pp. 5467–5482. DOI: 10.1007/s10064-019-01482-6.

14. Rong G., Peng J., Yao M., Jiang Q., Wong L. N. Y. Effects of specimen size and thermaldamage on physical and mechanical behavior of a fine-grained marble. Engineering Geology. 2018, vol. 232, pp. 46—55. DOI: 10.1016/j.enggeo.2017.11.011.

15. Darlington W. J., Ranjith P. G., Choi S. K. The effect of specimen size on strength and other properties in laboratory testing of rock and rock-like cementitious brittle materials. Rock Mechanics and Rock Engineering. 2011, vol. 44, no. 5, pp. 513—529. DOI: 10.1007/s00603011-0161-6.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.