Integrated analysis of electric energy demand of autogenous grinding mills at concentration factories

The relevance of the electric energy demand calculation at concentration factories is governed by the requirement to save on electricity bills in the overall production cost. One of the most energy-hungry phases in mineral processing is grinding using autogenous mills. The aim of this study is to estimate the electric energy demand of the mills using the methods of the statistical and correlation analyses. In conformity with the aim, the scope of the research encompasses: the mill statistics analysis, the correlation of the energy consumption and productiveness of the mills, the definition of the specific energy consumption of the mills. Using the experimental research findings and the statistical design methods, the computation procedure is developed for the energy response and specific energy consumption of the autogenous grinding mills; the procedure contains the necessary and sufficient number of criterion-based checkouts of the initial statistical data, and provides the basic parameters of the statistical law, as well the estimates of the correlation coefficient and the coefficients of the linear regressional relationship between separate samplings. It is found that the productiveness and energy consumption of the autogenous grinding mills have a low correlation coefficient, which points at the weak connection between the parameters P and Q. The Student’s t-test confirms that at  = 0.05, the correlation coefficient of the productiveness Q and the specific energy consumption , and the coefficients of the linear regressional relationship are significant. For minimizing the specific energy demand, it is recommended to operate within the optimum mode range at the maximum allowable capacity of the mill at 136.5 t/h.

Keywords: electric energy consumption, autogenous grinding mill, confidence interval, productiveness, capacity, correlation analysis, correlation coefficient, concentration factory, ore.
For citation:

Klyuev R. V., Khetagurov V. N., Gavrina O. A., Plieva M. T. Integrated analysis of electric energy demand of autogenous grinding mills at concentration factories. MIAB. Mining Inf. Anal. Bull. 2023;(5-1):145-156. [In Russ]. DOI: 10.25018/0236_1493_2023_51_ 0_145.

Issue number: 5
Year: 2023
Page number: 145-156
ISBN: 0236-1493
UDK: 621.311
DOI: 10.25018/0236_1493_2023_51_0_145
Article receipt date: 16.01.2023
Date of review receipt: 28.02.2023
Date of the editorial board′s decision on the article′s publishing: 10.04.2023
About authors:

R.V. Klyuev, Dr. Sci. (Eng.), Assistant Professor, Professor, Moscow Polytechnic University, 107023, Moscow, Russia, e-mail:, ORCID ID: 0000-0003-3777-7203,
V.N. Khetagurov1, Dr. Sci. (Eng.), Professor, e-mail:, ORCID ID: 0000-0002-2151-9309,
O.A. Gavrina1, Cand. Sci. (Eng.), Assistant Professor, e-mail:, ORCID ID: 0000-0002-9712-9075,
M.T. Plieva1, Cand. Sci. (Eng.), Assistant Professor, e-mail:, ORCID ID: 0000-0003-2633-0617,
1 North Caucasian Institute of Mining and Metallurgy (State Technological University), 362021, Vladikavkaz, Russia.


For contacts:

R.V. Klyuev, e-mail:


1. Antsiferov S. I., Bulgakov S. B., Karachevceva A. V., Timashev M. V. Advanced design of the countercurrent jet mill for the mining industry. MIAB. Mining Inf. Anal. Bull. 2022, no. 12-2, pp. 5—16. [In Russ]. DOI: 10.25018/0236_1493_2022_122_0_5.

2. Golik V. I. Promising direction of Sadon’s potential recovery (RNO-Alania). Sustainable Development of Mountain Territories. 2022, vol. 14, no. 1, pp. 68—75. [In Russ]. DOI: 10. 21177/1998-4502-2022-14-1-68-75.

3. Bosikov I. I., Klyuev R. V., Mayer A. V., Stas G. V. Development of a method for analyzing and evaluating the optimal state of aerogasodynamic processes in coal mines. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 1, pp. 97—106. [In Russ]. DOI: 10.21177/1998-4502-2022-14-1-97-106.

4. Vyalkova S. A., Morgoeva A. D., Gavrina O. A. Development of a hybrid model for predicting the consumption of electrical energy for a mining and metallurgical enterprise. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 3, pp. 486—493. [In Russ]. DOI: 10.21177/1998-4502-2022-14-3-486-493.

5. Morgoeva A. D., Morgoev I. D., Klyuev R. V., Gavrina O. A. Forecasting of electric energy consumption by an industrial enterprise using machine learning methods. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2022, vol. 333, no. 7, pp. 115—125. [In Russ]. DOI: 10.18799/24131830/2022/7/3527.

6. Klyuev R. V., Morgoev I. D., Morgoeva A. D., Gavrina O. A., Martyushev N. V., Efremenkov E. A., Mengxu Q. Methods of forecasting electric energy consumption: A literature review. Energies. 2022, vol. 15, no. 23, article 8919. DOI: 10.3390/en15238919.

7. Buryanina N. S., Korolyuk Yu. F., Maleeva E. I., Lesnykh E. V. Power transmission lines with a reduced number of wires in mountain territories. Sustainable Development of Mountain Territories. 2018, no. 3, pp. 404—410. [In Russ]. DOI: 10.21177/1998-4502-2018-10-3-404-410.

8. Zhukovskiy Y., Batueva D., Buldysko A., Shabalov M. Motivation towards energy saving by means of IoT personal energy manager platform. Journal of Physics: Conference Series. 2019, vol. 1333, no. 6, article 062033. DOI: 10.1088/1742-6596/1333/6/062033.

9. Kapansky A. A. Methods for solving the problems of evaluation and forecasting energy efficiency. Kazan state power engineering university bulletin. 2019, vol. 11, no. 2 (42), pp. 103—115. [In Russ].

10. Sanaev N. K., Tynyanskiy V. P. Determination of significant factors, influencing on the wear of cylinderpiston group parts, by the method of rank correlation. Vestnik mashinostroeniya. 2018, no. 12, pp. 57—60. [In Russ].

11. Balovtsev S. V., Skopintseva O. V., Kulikova E. Yu. Hierarchical structure of aerological risks in coal mines. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 2, pp. 276—285. [In Russ]. DOI: 10.21177/1998-4502-2022-14-2-276-285.

12. Wang Y., Zhang N., Chen X. A short-term residential load forecasting model based on LSTM recurrent neural network considering weather features. Energies. 2021, vol. 14, no. 10, article 2737. DOI: 10.3390/en14102737.

13. Gunkel P. A., Jacobsen H. K., Bergaentzlé C.-M., Scheller F., Andersen F. M. Variability in electricity consumption by category of consumer: The impact on electricity load profiles. International Journal of Electrical Power & Energy Systems. 2022, vol. 147, article 108852. DOI: 10.1016/j.ijepes.2022.108852.

14. Gagnon Ph., Hayashi Y. Theoretical properties of Bayesian Student-t linear regression. Statistics & Probability Letters. 2022, vol. 193, article 109693. DOI: 10.1016/j.spl.2022.109693.

15. Wang J., Shao W., Zhang X., Qian J., Song Zh., Peng Zh. Nonlinear variational Bayesian Student’s-t mixture regression and inferential sensor application with semisupervised data. Journal of Process Control. 2021, vol. 105, pp. 141—159. DOI: 10.1016/j.jprocont.2021.07.013.

16. Albuquerque P. C., Cajueiro D. O., Rossi M. D. C. Machine learning models for forecasting power electricity consumption using a high dimensional dataset. Expert Systems With Applications. 2022, vol. 187, article 115917. DOI: 10.1016/J.ESWA.2021.115917.

17. Naha R., Garg S., Battula S. K., Amin M. B., Georgakopoulos D. Multiple linear regression-based energy-aware resource allocation in the Fog computing environment. Computer Networks. 2022, vol. 216, article 109240. DOI: 10.1016/j.comnet.2022.109240.

18. Ji Q., Zhang S., Duan Q., Gong Y., Li Y., Xie X., Bai J., Huang C., Zhao X. Shortand medium-term power demand forecasting with multiple factors based on multi-model fusion. Mathematics. 2022, vol. 10, no. 12, article 2148. DOI: 10.3390/math10122148.

19. Zhou C., Chen X. Predicting China’s energy consumption: Combining machine learning with three-layer decomposition approach. Energy Reports. 2021, vol. 7, pp. 5086—5099. DOI: 10.1016/j.egyr.2021.08.103.

20. Yousaf A., Asif R. M., Shakir M., Rehman A. U., Adrees M. An Improved residential electricity load forecasting using a machine-learning-based feature selection approach and a proposed integration strategy. Sustainability. 2021, vol. 13, no. 11, article 6199. DOI: 10.3390/ su13116199.

21. Hamed M. M., Ali H., Abdelal Q. Forecasting annual electric power consumption using a random parameters model with heterogeneity in means and variances. Energy. 2022, vol. 255, article 124510. DOI: 10.1016/

22. Kanté M., Li Y., Deng S. Scenarios analysis on electric power planning based on multiscale forecast: A case study of Taoussa, Mali from 2020 to 2035. Energies. 2021, vol. 14, no. 24, article 8515. DOI: 10.3390/en14248515.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.