Integrated acoustic and optical logging in adjacent rock mass. Equipment and physical modeling

One of the routes of advancing the downhole geophysical survey of the rock mass structure and behavior is the joint acoustic and optical research and the integrated processing of the results. For refining the acoustic measurement parameters, the article describes the shear wave scanning inspection of isotropic and laminated rocks, as well as samples with fracture. It is shown that the strongest attenuation of the shear wave amplitude takes place when the directions of particle displacement and stratification planes (fracture planes) coincide, and this fact can be used to determine fracture slopes during downhole ultrasonic scanning. With a view to testing the concept of ultrasonic and optical measurement integration, a dedicated logging system and a physical model of a well were manufactured. The core of the logging system is а sonic device capable of contactless optical identification of structural features of the well walls, as well as can record parameters of Pand S-waves with the adjustable polarization phasor in the ultrasonic frequency range. The model experimentation proved efficiency of the logging system. The method reliability increases with the qualitative coincidence of the acoustic and optical measurement results, and the performance enhances as the ultrasonic measurement is only carried out in abnormal zones detected by the optical inspection.

Keywords: logging, rocks, ultrasound, optical methods, complexing, jointing, control, shear waves.
For citation:

Nikolenko P. V., Zaitsev M. G. Integrated acoustic and optical logging in adjacent rock mass. Equipment and physical modeling. MIAB. Mining Inf. Anal. Bull. 2023;(1):95-106. [In Russ]. DOI: 10.25018/0236_1493_2023_1_0_95.


The study was supported by the Russian Science Foundation, Project No. 21-77-00046.

Issue number: 1
Year: 2023
Page number: 95-106
ISBN: 0236-1493
UDK: 622.02:539.2
DOI: 10.25018/0236_1493_2023_1_0_95
Article receipt date: 07.11.2022
Date of review receipt: 05.12.2022
Date of the editorial board′s decision on the article′s publishing: 10.12.2022
About authors:

P.V. Nikolenko1, Cand. Sci. (Eng.), Assistant Professor, e-mail:, ORCID ID: 0000-0002-5126-6576,
M.G. Zaitsev1, Graduate Student, e-mail:, ORCID ID: 0000-0001-9015-9346,
1 National University of Science and Technology «MISiS», 119049, Moscow, Russia.


For contacts:

P.V. Nikolenko, e-mail:


1. Zhukov A. A., Prigara A. M., Tsarev R. I., Shustkina I. Yu. Method of mine seismic survey for studying geological structure features of Verkhnekamskoye salt deposit. MIAB. Mining Inf. Anal. Bull. 2019, no. 4, pp. 121—136. [In Russ]. DOI: 10.25018/0236-1493-2019-04-0-121-136.

2. Musalev D. N., Prokhorov N. N., Klabuk A. M. GPR research experience in scientific and technical support of mining operations at the starobinskoye potassium salt deposit. Gornyi Zhurnal. 2018, no. 8, pp. 42—47. [In Russ]. DOI: 10.17580/gzh.2018.08.05.

3. Bazhenova E. A. Identification of fault zones within an orebody using a set of geophysical methods. MIAB. Mining Inf. Anal. Bull. 2022, no. 5, pp. 67—83. [In Russ]. DOI: 10.25018/ 0236_1493_2022_5_0_67.

4. Dorokhin К. А. Experience of borehole seismic sounding for the assessment of physical state of rock mass using 2D and 3D representations. MIAB. Mining Inf. Anal. Bull. 2019, no. 5, pp. 80—88. [In Russ]. DOI: 10.25018/0236-1493-2019-05-0-80-88.

5. Kobayashi R. Studies on crack distribution and sonic velocity change in rocks. Journal of the Japan Institute of Metals. 1974, vol. 90, no. 1031, pp. 21—26. DOI: 10.2473/shigentosozai1953.90.1031_21.

6. Shkuratnik V. L., Bochkareva T. N. Theory of electroacoustic path during the interhole sonic testing of rocks surrounding. A worked space. Journal of Mining Science. 1996, vol. 32, no. 6, pp. 476—482. DOI: 10.1007/BF02046110.

7. Rasolofosaon P. N. J., Rabbel W., Siegesmund S., Vollbrecht A. Characterization of crack distribution: Fabric analysis versus ultrasonic inversion. Geophysical Journal International. 2002, vol. 141, no. 2. pp. 413—424. DOI: 10.1046/j.1365-246x.2000.00093.x.

8. Li T., Wang Z., Gu Y. J., Wang R., Wang Y. Experimental study of fracture structure effects on acoustic logging data using a synthetic borehole model. Journal of Petroleum Science and Engineering. 2019, vol. 183, article 106433. DOI: 10.1016/j.petrol.2019.106433.

9. Li T., Wang Z., Yu N., Wang R., Wang Y. Numerical study of pore structure effects on acoustic logging data in the borehole environment. Fractals. 2020, vol. 28, no. 3, article 2050049. DOI: 10.1142/S0218348X20500498.

10. Liu Y., Li Y., Qiao L., Fan D. Dry coupled ultrasonic testing technology and its application in testing rock dynamic and static parameters. Meitan Xuebao/Journal of the China Coal Society. 2019, vol. 44, no. 5, pp. 1465—1472. DOI: 10.13225/j.cnki.jccs.2019.6019.

11. Liu Y., Qiao L., Li Y., Ma G., Golosov A. M. Ultrasonic spectrum analysis of granite damage evolution based on dry-coupled ultrasonic monitoring technology. Advances in Civil Engineering. 2020, vol. 2020, article 8881800. DOI: 10.1155/2020/8881800.

12. Lorentzen M., Bredesen K., Mosegaard K., Nielsen L. Estimation of shear sonic logs in the heterogeneous and fractured Lower Cretaceous of the Danish North Sea using supervised learning. Geophysical Prospecting. 2022, vol. 70, no. 8, pp. 1410—1431. DOI: 10.1111/1365-2478.13252.

13. Gubaidullin A. A., Boldyreva O. Y., Dudko D. N. Velocity and attenuation of linear waves in porous media saturated with gas and its hydrate. Journal of Applied Mechanics and Technical Physics. 2022, vol. 63, no. 4, pp. 599—605. DOI: 10.1134/S002189442204006X.

14. Cai M., Li M., Zhu X., Luo H., Zhang Q. Comprehensive evaluation of rock mechanical properties and in-situ stress in tight sandstone oil reservoirs. Frontiers in Earth Science. 2022, vol. 10, article 911504. DOI: 10.3389/feart.2022.911504.

15. Lebedev A. V. A way to simplify calculations in acoustic logging. Geophysics. 2021, vol. 86, no. 5, pp. 1—22. DOI: 10.1190/geo2020-0893.1.

16. Kormnov A. A., Nikolenko P. V. Structural diagnostics of the roof of a mine working using ultrasonic noise correlation logging. MIAB. Mining Inf. Anal. Bull. 2016, no. 8, pp. 265—271. [In Russ].

17. Schuster K., Amann F., Yong S., Bossart P., Connolly P. High-resolution mini-seismic methods applied in the Mont Terri rock laboratory (Switzerland). Swiss Journal of Geosciences. 2017, vol. 110, no. 1, pp. 213—231. DOI: 10.1007/978-3-319-70458-6_11.

18. Winkler K. W., D'Angelo R. Ultrasonic borehole velocity imaging. Geophysics. 2006, vol. 71, no. 3, pp. F25—F30. DOI: 10.1190/1.2194532.

19. Yuan R., Han D., Tang Y., Wei H., Mo T., Wang C. Fracture characterization in oil-based mud boreholes using image logs: example form tight sandstones of Lower Cretaceous Bashijiqike Formation of KS5 well area, Kuqa Depression, Tarim Basin, China. Arabian Journal of Geosciences. 2021, vol. 14, no. 6, article 435. DOI: 10.1007/s12517-021-06750-y.

20. Lei T., Zeroug S., Bose S., Prioul R., Donald A. Inversion of high-resolution high-quality sonic compressional and shear logs for unconventional reservoirs. Petrophysics. 2019, vol. 60, no. 6, pp. 697—711. DOI: 10.30632/PJV60N6-2019a1.

21. Enikeev V. N., Tashbulatov V. D., Gaifullin M. Ya., Guman O. M. Application of borehole acoustic methods for solving problems of developing solid mineral deposits. Karotazhnik. 2011, no. 5 (203), pp. 224—237. [In Russ].

22. Williams J., Carole D. Acoustic and optical borehole-wall imaging for fractured-rock aquifer studies. Journal of Applied Geophysics. 2004, vol. 55, no. 1—2, pp. 151—159. DOI: 10.1016/j.jappgeo.2003.06.009.

23. Sait I., Joerg M. Fracture connectivity from fracture intersections in borehole image logs. Computers & Geosciences. 2003, vol. 29, no. 2, pp. 143—153. DOI: 10.1016/S0098-3004(02)00113-9.

24. Skvortsov V. Yu., Skobelev A. V. Deep television video system «argo-digital» on a logging cable. Karotazhnik. 2012, no. 1 (211), pp. 110—116. [In Russ].

25. Yuanming J. Infrared radiation with deformation of bolt and rock. International symposium on photoelectronic detection and imaging 2009: advances in infrared imaging and applications. 2009, vol. 7383. DOI: 10.1117/12.830941.

26. Weixing W., Fengping W., Xiaojun H., Junfang S. Rock fracture image acquisition using two kinds of lighting and fusion on a wavelet transform. Bulletin of Engineering Geology and the Environment. 2016, vol. 75, no. 1, pp. 311—324. DOI: 10.1007/s10064-015-0747-4.

27. Nikolenko P. V., Zaitsev M. G. Surface roughness estimation and rock type identification by ultrasonic and optical techniques. MIAB. Mining Inf. Anal. Bull. 2022, no. 3, pp. 5—15. [In Russ]. DOI: 10.25018/0236_1493_2022_3_0_5.

28. Nikolenko P. V., Zaitsev M. G., Chepur M. D. Method and equipment for the expresscontrol of fracturing in adjacent rock mass by optical borehole logging. Gornyi Zhurnal. 2022, no. 3, pp. 8—12. [In Russ]. DOI: 10.17580/gzh.2022.03.02.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.