Composite sorbents from natural and man-made raw materials: optimization of composition for reclamation

The article explores the adsorption of heavy metals’ and metalloids’ (HMM) ions from model solutions with different concentrations of HMM at a constant ambient temperature (sorbents — peat, water treatment sludge; heavy metals: copper, arsenic, lead), and the subsequent construction of adsorption isotherms for the studied materials and experimental compositions of the composite mixtures “ peat — water treatment sludge”. The purpose of the study: to identify the optimal composition of the composite sorption material based on natural raw materials and water treatment sludge, potentially effective in relation to the selective immobilization of HMM’s ions. The results of the experiments showed that for the “green” disposal of water treatment sludge mixed with peat, the content of water treatment sludge can reach 80%. At the same time, the preservation of the sorption efficiency of the composite material in comparison with the initial components was noted. It has been established that adsorption isotherms of Cu2+, As3+, Pb2+ ions on the tested materials — peat, water treatment sludge and composite sorption material (peat — water treatment sludge in various ratios) can be well approximated by straight lines, which confirms the applicability of both the Freundlich model and the model Langmuir, which are the most commonly used models of equilibrium adsorption. The study confirms the hypothesis that the “green” utilization of a man-made product makes it possible to obtain an affordable and inexpensive meliorant suitable for reclamation and simultaneous remediation of disturbed lands contaminated with HMM.

Keywords: sorbent, meliorant, reclamation, disturbed lands, peat, water treatment sludge, adsorption, optimal composition, adsorption isotherm, Freundlich model, Langmuir model.
For citation:

Yurak V. V., Apakashev R. A., Lebzin M. S., Malyshev A. N. Composite sorbents from natural and man-made raw materials: optimization of composition for reclamation. MIAB. Mining Inf. Anal. Bull. 2023;(12-1):177—191. [In Russ]. DOI: 10.25018/0236_1493_2023_121_0_177.


The research was carried out at the expense of a grant from the Russian Science Foundation No. 22-24-20102, / with the financial support of the Government of the Sverdlovsk region.

Issue number: 12
Year: 2023
Page number: 177-191
ISBN: 0236-1493
UDK: 544.723.2
DOI: 10.25018/0236_1493_2023_121_0_177
Article receipt date: 15.05.2023
Date of review receipt: 02.10.2023
Date of the editorial board′s decision on the article′s publishing: 10.11.2023
About authors:

Yurak V. V., Dr. Sci. (Economic), associate professor; associate professor of the Department of Economics and Management, Head of the Research Laboratory of Disturbed Lands’ and Technogenic Objects’ Reclamation, The Ural State Mining University; Scopus Author ID: 57190411535; ORCID: 0000-0003-1529-3865; SPIN-код: 6822−2708 (The Ural State
Mining University, Russia, 620144, Yekaterinburg, Kuybysheva st., 30, e-mail: vera_
Apakashev R. A., Dr. Sci. (Chemical), professor; Vice-Rector for Scientific Work, The Ural State Mining University; Scopus Author ID: 6603092433; ORCID: 0000-0002-9006-3667; SPIN-код: 8488−6615 (The Ural State Mining University, Russia, 620144, Yekaterinburg, Kuybysheva st., 30, e-mail:;
Lebzin M. S., Junior Researcher, Research Laboratory for Reclamation of Disturbed Lands and Technogenic Objects, Ural State Mining University, Kuibysheva 30, Yekaterinburg, 620144, Scopus Author ID: 57218647741; ORCID: 0000-0001-5959-135X, Russia,;
Malyshev A. N., laboratory assistant-researcher of the Research Laboratory for Reclamation of Disturbed Lands and Technogenic Objects, Ural State Mining University, 30, Kuibysheva st., Yekaterinburg, 620144, Russia, ORCID: 0000-0002-3104-1687,


For contacts:

1. Seleznev A. A., Klimshin A. V. Heavy metals in soils on the territory of Yekaterinburg. Proceedings of the Ural State Mining University. 2020, issue 1(57), pp. 96–104. [In Russ]. DOI: 10.21440/2307-2091-2020-1-96−104.

2. Pisareva A. V., Belopukhov S. L., Savich V. I., Stepanova L. P., Gukalov V. V., Yakovleva E. V., Shaikhiev I. G. Migration of heavy metals from the source of pollution depending on the relationship in the landscape. Vestnik tekhnologicheskogo universiteta. 2017, vol. 20, no. 6, pp.160–163. [In Russ].

3. Bou Kheir R., Greve M., Greve M., Peng Y., Shomar B. A Comparative GIS tree– pollution analysis between arsenic, chromium, mercury, and uranium contents in soils of urban and industrial regions in Qatar. Euro-Mediterranean Journal for Environmental Integration. 2019, no. 4(10). DOI: 0.1007/s41207-019-0099-8.

4. Mikkonen H. G., Dasika G., Drake J. A., Wallis C. J., Clarke B. O., Reichman S. M. Evaluation of environmental and anthropogenic influences on ambient background metal and metalloid concentration in soil. Science of the total environment. 2018, vol. 624, pp. 599–610. DOI: 10.1016/j.scitotenv.2017.12.131.

5. Ali H., Khan E. What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’—Proposal of a comprehensive definition. Toxicol. Environ. Chem. 2018, vol. 100, рр. 6–19. DOI: 10.1080/02772248.2017.1413652.

6. Dutta S., Mitra M., Agarwal P., Mahapatra K., De S., Sett U., Roy S. Oxidative and genotoxic damages in plants in response to heavy metal stress and maintenance of genome stability. Plant Signal Behav. 2018, vol. 13(8), e1460048. DOI: 10.1080/15592324.2018.1460048.

7. Li L., Zhang Y., Ippolito J. A., Xing W., Qiu K., Yang H. Lead smelting effects heavy metal concentrations in soils, wheat, and potentially humans. Environ. Pollut. 2020, vol. 257, 113614. DOI: 10.1016/j.envpol.2019.113641.

8. Ali H., Khan E., Ilahi I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 6730305. DOI: 10.1155/2019/6730305.

9. Chiampo F., Zacchini M. (eds.). Environmental Restoration of Metal-Contaminated Soils. Special Issue published online in the open access journal Applied Sciences. 2021 (available at: DOI: 10.3390/app112210805.

10. Koptsik G. N. Modern approaches to remediation of heavy metal polluted soils: A review. Eurasian Soil Science. 2014, vol. 47, рр. 707–722. DOI: 10.1134/S1064229314070072.

11. Raffa C., Chiampo F., Shanthakumar S. Remediation of Metal/Metalloid-Polluted Soils: A Short Review. Appl. Sci. 2021, vol. 11, 4134. DOI: 10.3390/app11094134.

12. Nikovskaya G. N., Gruzina T. G., Ulberg Z. R., Koval L. A., Ovcharenko F. D. Novel Approaches to Bioremediation and Monitoring of Soils Contaminated by Heavy Metals and Radionuclides. Barany S. (ed.) Role of Interfaces in Environmental Protection. NATO Science Series (Series IV: Earth and Environmental Sciences). 2003, pp. 529–536. DOI: 10.1007/978-94-010-0183−0_33.

13. Singh A., Prasad S. M. Remediation of heavy metal contaminated ecosystem: an overview on technology advancement. Int. J. Environ. Sci. Technol. 2015, vol. 12, рр. 353–366. DOI: 10.1007/s13762−014−0542-y.

14. Ignatyeva M., Yurak V., Pustokhina N. Recultivation of post-mining disturbed land: review of content and comparative law and feasibility study. Resources. — 2020. — Т. 9. — № 6. — C. 73. DOI: 10.3390/RESOURCES9060073.

15. Ignatyeva M. N., Yurak V. V., Dushin A. V., Polyanskaya I. G. Assessing challenges and threats for balanced subsoil use. Environment, Development and Sustainability. 2021, vol. 23, no. 12, pp. 17904–17922. DOI: 10.1007/s10668-021-01420-1.

16. Amirahmadi E., Hojjati S. M., Kammann C., Ghorbani M., Biparva P. The Potential Effectiveness of Biochar Application to Reduce Soil Cd Bioavailability and Encourage Oak Seedling Growth. Appl. Sci. 2020, vol. 10, 3410. DOI: 10.3390/app10103410.

17. Dhaliwal S. S., Singh J., Taneja P. K., Mandal A. Remediation techniques for removal of heavy metals from the soil contaminated through different sources: A review. Environ. Sci. Pollut. Res. 2020, vol. 27, рр. 1319–1333. DOI: 10.1007/s11356-019-06967-1.

18. Yurak V., Apakashev R., Dushin A., Usmanov A., Lebzin M., Malyshev A. Testing of Natural Sorbents for the Assessment of Heavy Metal Ions’ Adsorption. Appl. Sci. 2021, vol. 11, 3723. DOI: 10.3390/app11083723.

19. Novoselova L. Yu., Sirotkina E. E., Pogadaeva N. I. Utilization of water treatment sediments in the processes of oil extraction from aqueous media. Petrochemistry. 2008, vol. 48, no. 1, pp. 65–68. [In Russ].

20. Pochtarev A. N., Kozhemyakin V. A. Aluminum oxychloride — coagulant from water treatment sediments. Vodoochistka. Water treatment. Water supply. 2011, no. 3 (39), pp. 38–40. [In Russ].

21. Novosyolova L. Yu., Sirotkina E. E. The structure of sorbents based on thermally activated iron-containing sediment of water treatment. Journal of Physical Chemistry. 2010, vol. 84, no. 6, pp. 1146–1151. [In Russ].

22. Bukin A. V., Motorin A. S., Iglovikov A. V. Creation of a reclamation mixture based on the sludge from the water treatment of the Nyaganskaya TPP and peat. Agro-food policy of Russia. 2016, no. 12 (60), pp. 70–75. [In Russ].

23. Maharana M., Manna M., Sardar M., Sen S. Heavy Metal Removal by Low-Cost Adsorbents. In: Inamuddin, Ahamed M., Lichtfouse E., Asiri A. (eds) Green Adsorbents to Remove Metals, Dyes and Boron from Polluted Water. Environmental Chemistry for a Sustainable World. 2021, vol. 49. DOI: 10.1007/978−3-030−47400−3_10.

24. Nguyen D. T., Vezentsev A. I., Sokolovsky P. V., Greish A. A. Adsorption of glyphosate on carbon-containing materials. Journal of Physical Chemistry. 2021, vol. 95, no. 6, pp. 928–932. [In Russ]. DOI: 10.31857/S0044453721060194.

25. Rakishev A. K., Vedenyapina M. D., Kulayshin S. A., Kurilov D. V. Adsorption of salicylic acid from an aqueous medium on microporous granular activated carbon. Chemistry of solid fuel. 2021, no. 2, pp. 54–59. [In Russ]. DOI: 10.31857/S0023117721020067.

26. Shumilova M. A., Petrov V. G. Adsorption of zinc ions by soils of the Udmurt Republic. Theoretical and applied ecology. 2021, no. 1, pp. 73–78. [In Russ]. DOI: 10.25750/19954301-2021-1-073−078.

27. Gurkova E. A., Ayunova O. D., Volobaev A. A., Kalnaya O. I. On the issue of assessing soil pollution by waste from the mining and processing plant “Tuvakobalt” (Tuva). Sustainable development of mountain territories. 2019, vol.11, no. 2(40), pp. 142–155. [In Russ]. DOI: 10.21177/1998-4502-2019-11−2-142−155.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.