Concept of acceptable risk in operation of subway facilities

The acceptable risk concept becomes currently a framework for the prediction of contingent situations in development of urban underground space. The general provisions of the concept are formulated by the Joint Risk Management Committee and are recited in the State Science and Technology Program. The acceptable risk concept in operation of underground facilities in subways includes the aspects of engineering, simulation, expertize and sociology. The most acceptable techniques in operation of underground structures from the viewpoint of ecological safety can only be relevant at ecological compatibility of technologies and fluid relations between the constituents of the natural-and-technical rock mass–underground construction–environment geosystem. In this regard, the main thing, is the geotechnical factor. Regulatory documents offer a deficient regulation of acceptable risks for underground facilities. For subway structures, especially in the period of operation, such regulation is absent at all. Nonetheless, the risk rating in many ways governs the risk management efficiency during operation of underground facilities of subways. This article proposes a generalized model of risk reduction in operation of subway facilities. The model includes the thorough prediction and monitoring of the geological environment, takes into account human factor and is based on mitigation of residual risks using the Big Data, Internet of Things and BIM resources.

Keywords: concept, acceptable risk, operation of underground facilities in subways, information resource, ecological safety, rock mass, risk rating, technological accident.
For citation:

Kulikova E. Yu., Zhukov S. A. Concept of acceptable risk in operation of subway facilities. MIAB. Mining Inf. Anal. Bull. 2024;(2):140-150. [In Russ]. DOI: 10.25018/ 0236_1493_2024_2_0_140.

Acknowledgements:
Issue number: 2
Year: 2024
Page number: 140-150
ISBN: 0236-1493
UDK: 624
DOI: 10.25018/0236_1493_2024_2_0_140
Article receipt date: 12.11.2023
Date of review receipt: 15.12.2023
Date of the editorial board′s decision on the article′s publishing: 10.01.2024
About authors:

E.Yu. Kulikova, Dr. Sci. (Eng.), Professor, e-mail: fragrante@mail.ru, National University of Science and Technology «MISiS», 119049, Moscow, Russia,
S.A. Zhukov, General Director, JSC «Mosmetrostroy», 127051, Moscow, Russia, e-mail: 1reception-3@metrostroy.com.

 

For contacts:

E.Yu. Kulikova, e-mail: e-mail: fragrante@mail.ru.

Bibliography:

1. Renaud M., Kumral M. Planning a complex mine construction project under price cyclicality. Engineering Management Journal. 2020, vol. 32, no. 6, pp. 120—129. DOI: 10.1080/10429247.2020.1718461.

2. Petrov A. M., Magomedov R. M., Savina S. V. Ecological safety of construction in the concept of sustainable development. Construction Materials and Products. 2023, vol. 6, no. 1, pp. 5—17. [In Russ]. DOI: 10.58224/2618-7183-2023-6-1-5-17.

3. Burkov V. N., Gratsianskiy E. V., Dzyubko S. I., Shchepkin A. V. Modeli i mekhanizmy upravleniya bezopasnost'yu [Models and mechanisms of safety management], Moscow, SINTEG, 2001, 160 p.

4. Burkova I. V., Tolstykh A. V., Wandykov B. K. Models and methods of optimization of safety programs. Control sciences. 2005, no. 1, pp. 51—55. [In Russ].

5. Mazur S. I. Sovremennye metody snizheniya ekologicheskogo riska pri stroitel'stve i ekspluatatsii nazemnykh ob"ektov neftegazotransportnykh sistem [Modern methods of reducing environmental risk in the construction and operation of ground-based oil and gas transportation systems], Moscow, OAO «VNIIO-ENG», 2001, 82 p.

6. Shao F., Wang Y. Intelligent overall planning model of underground space based on digital twin. Computers & Electrical Engineering. 2022, vol. 104, article 108393. DOI: 10.1016/j.compeleceng.2022.108393.

7. Mishra R., Uotinen L., Rinne M. A Bayesian network approach for geotechnical risk assessment in underground mines. Journal of the Southern African Institute of Mining and Metallurgy. 2021, vol. 121, no. 6, pp. 287—294. DOI: 10.17159/2411-9717/581/2021.

8. Panarin I. I., Fediuk R. S., Vykhodtsev I. А., Vavrenyuk S. V., Klyuev A. V. Injection mortars based on composite cements for soil fixation. Construction Materials and Products. 2023, vol. 6, no. 4, pp. 15—29. [In Russ]. DOI: 10.58224/2618-7183-2023-6-4-15-29.

9. Yutyaev A. E., Iakunchikov E. N., Oganesyan A. S., Agafonov V. V. Evaluation of design solutions and technological systems of coal mines taking into account the risk. Ugol'. 2019, no. 7, pp. 52—57. [In Russ]. DOI: 10.18796/0041-5790-2019-7-52-57.

10. Balovtsev S. V., Skopintseva O. V., Kolikov K. S. Aerological risk management in designing, operation, closure and temporary shutdown of coal mines. MIAB. Mining Inf. Anal. Bull. 2020, no. 6, pp. 85—94. [In Russ]. DOI: 10.25018/0236-1493-2020-6-0-85-94.

11. Kulikova A. A., Ovchinnikova T. I. On the issue of reducing geoecological risks at mining enterprises. MIAB. Mining Inf. Anal. Bull. 2021, no. 2-1, pp. 251—262. [In Russ]. DOI: 10.25018/02361493-2021-21-0-251-262.

12. Brillinger D. R. Risk analysis: Examples and discussion, applications of statistics and probabilities in civil engineering. Millpress, Rotterdam, the Netherlands, 2003, pp. 115—122

13. Carlsson Mats Management of geotechnical risks in infrastructure projects. Division of Soil and Rock Mechanics Department of Civil and Architectural Engineering. Royal Institute of Technology, Stockholm, Sweden, 2005, pp. 240—251

14. Clayton Ch. Managing geotechnical risk: Time for change. ICE Proceedings Geotechnical Engineering. 2001, vol. 149, pp. 3—11. DOI: 10.1680/geng.2001.149.1.3.

15. Hebblewhite B. K. Geotechnical risk in mining methods and practice: critical issues and pitfalls of risk management. Proceedings of the First International Conference on Mining Geomechanical Risk, 2019, pp. 299—308.

16. Hebblewhite B. K. Northparkes findings — the implications for geotechnical professionals in the mining industry. Proceedings of the First Australasian Ground Control in Mining Conference. University of New South Wales, Sydney, 2003, pp. 3—10.

17. Hebblewhite B. K. Management of core geotechnical risks for underground mining projects. Mining Risk Management Conference. The Australasian Institute of Mining and Metallurgy, Melbourne. 2003, pp. 5.

18. Mishra R. K., Rinne M. Geotechnical Risk classification for underground mines. De Gruyter Open. 2015, no. 60, pp. 51—60.

19. Trofimova T. E., Rodionovsky A. N. Development of public spaces: the impact of metro stations construction on the formation of the structure of the adjacent territory. Construction Materials and Products. 2023, vol. 6, no. 5, p. 5. DOI: 10.58224/2618-7183-2023-6-5-5.

20. Klyuev R. V., Bosikov I. I., Mayer A. V., Gavrina O. A. Comprehensive analysis of the effective technologies application to increase sustainable development of the naturaltechnical system. Sustainable Development of Mountain Territories. 2020, vol. 12, no. 2, pp. 283—290. [In Russ]. DOI: 10.21177/1998-4502-2020-12-2-283-290.

21. Mishra R. K., Janiszewski M., Uotinen L. K. T., Szydlowska M., Siren T., Rinne M. Geotechnical risk management concept for intelligent deep mines. Procedia Engineering. 2017, vol. 191, pp. 361—368.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.