Concept of mining haulage equipment failure prediction based on network analysis

The article discusses development of a network model for predicting failures of dump trucks in open pit mining. The model uses failure statistics and the network analysis of data from sensors mounted on the machines. The study aims at reduction of emergency downtimes in mining using advanced information and communication technologies. The modern methods of time series processing, such as the Fourier Transform, wavelet analysis and fractal analysis. The application of the network analysis allows finding metrics sensitive to the change in equipment condition, which favors accurate prediction of time of probable failures. The proposed prediction model aims to reduce emergency downtimes and enhance equipment efficiency. The algorithms of transformation of time series to network structures, including visibility graphs, which ensures demonstrativeness and precision of the analysis are described. The pilot introduction of the model is planned with a view to monitoring and optimizing key units of dump trucks as an important step in digitization of mining equipment maintenance.

Keywords: reliability of mining machines and equipment, digitalization, digital twin, digital signal, network analysis of time series, network markers of equipment capabilities, failure prediction, open pit mine dump trucks, internal combustion engine.
For citation:

Zyryanov I. V., Nepomnyashchikh K. A., Trufanov A. I., Khramovskikh V. A., Shevchenko A. N. Concept of mining haulage equipment failure prediction based on network analysis. MIAB. Mining Inf. Anal. Bull. 2024;(9):160-180. [In Russ]. DOI: 10.25018/ 0236_1493_2024_9_0_160.

Acknowledgements:
Issue number: 9
Year: 2024
Page number: 160-180
ISBN: 0236-1493
UDK: 622.232.8: 519.179
DOI: 10.25018/0236_1493_2024_9_0_160
Article receipt date: 22.12.2023
Date of review receipt: 10.06.2024
Date of the editorial board′s decision on the article′s publishing: 10.08.2024
About authors:

I.V. Zyryanov1, Dr. Sci. (Eng.), Professor, Professor, Institute of Subsoil Use; e-mail: zyryanoviv@inbox.ru, Head of Chair, Polytechnic Institute (branch), M.K. Ammosov North-Eastern Federal University, 678170, Mirny, Russia,
K.A. Nepomnyashchikh1, Graduate Student, Assistant of Chair, Institute of Subsoil Use, e-mail: nka@istu.edu,
A.I. Trufanov1, Cand. Sci. (Phys. Mathem.), Senior Researcher, Assistant Professor, School of Information Technology and Data Science, e-mail: troufan@istu.edu,
V.A. Khramovskikh1, Cand. Sci. (Eng.), Assistant Professor, Assistant Professor, Institute of Subsoil Use, e-mail: wax@istu.edu,
A.N. Shevchenko1, Cand. Sci. (Eng.), Assistant Professor, Assistant Professor, Director, Institute of Subsoil Use, e-mail: shan@istu.edu,
1 Irkutsk National Research Technical University, 664074, Irkutsk, Russia.

 

For contacts:

K.A. Nepomnyashchikh, e-mail: nka@istu.edu.

Bibliography:

1. Velikanov V. S., Musonov O. S., Panfilova O. R., Ilyina E. A., Derina N. V. Tools of directive analytics in minimizing feedback mining equipment. Vestnik of Nosov Magnitogorsk State Technical University. 2021, vol. 19, no. 4, pp. 5—15. [In Russ]. DOI: 10.18503/1995-2732-2021-19-4-5-15.

2. Balakin N. A., Vylgan S. S., Dolzhko D. M. The influence of a feasibility study on improving the accuracy of forecasting using the mining equipment service. Young scientist. 2015, no. 7 (87), pp. 88—91. [In Russ], available at: https://moluch.ru/archive/87/16626/ (accessed 04.12.2023).

3. Khramovskikh V. A., Shevchenko A. N., Nepomnyashchikh K. A. Adaptive data mining as a tool for predicting the resource of mining machinery and equipment nodes. Earth science and subsoil use. 2023, vol. 46(2), pp. 212—225. [In Russ]. DOI: 10.21285/2686-9993-2023-46-2-212-225.

4. Grishin I. A., Velikanov V. S., Nazarov O. V., Derina N. V. On the possibility of using the local approximation method to predict irregular time series of failures of mining vehicles. Ugol'. 2022, no. 3, pp. 84—89. [In Russ]. DOI: 10.18796/0041-5790-2022-3-84-89.

5. Khomyakova S. S. Transformation and consolidation of the term «digitalization» at the legislative level. Young scientist. 2019, no. 41 (279), pp. 9—12. [In Russ], available at: https://moluch.ru/ archive/279/62867/ (accessed 13.11.2023).

6. Kondratieva M. N., Komakhina A. V. Digitalization: a study of basic terms. Ekonomika i upravlenie: nauchno-prakticheskiy zhurnal. 2022, no. 3 (165), pp. 134—139. [In Russ].

7. Gollai A. V., Gollai I. N., Loginovsky O. V. Digital transformation of socio-economic systems as the end result of the digitalization process. Bulletin of the South Ural state university. Computer technologies, automatic control, radio electronics. 2023, vol. 23, no. 2, pp. 65—81. [In Russ].

8. Kalenov O. E. Digitalization in the mining industry. Vestnik of the Plekhanov Russian University of Economics. 2021, vol. 18, no. 5 (119), pp. 184—192. [In Russ]. DOI: 10.21686/2413-2829-2021-5-184-192.

9. Romashikhin M. Yu., Gorbokonenko P. A. Implementation of window Fourier transform based on FPGA for spectral analysis of nonstationary signals. Innovatsionnye tekhnologii, v elektronike i priborostroenii: sbornik dokladov Rossiyskoy nauchno-tekhnicheskoy konferentsii s mezhdunarodnym uchastiem, T. 1 [Innovative technologies in electronics and instrumentation: collection of reports of the Russian Scientific and technical conference with international participation, vol. 1], Мoscow, 2021, pp. 177—182. [In Russ].

10. Dolgikh N. N., Nabiullin R. A., Shapovalov P. V., Shumskaya N. V. Review of methods of using the wavelet transform to analyze distortion of electricity quality indicators in power supply systems. Tekhnicheskie nauki — ot teorii k praktike. 2015, no. 11(47), pp. 114—120. [In Russ].

11. Kulaichev A. P. Criticism of wavelet analysis of EEG. Aktual'nye problemy gumanitarnykh i estestvennykh nauk. 2016, vol. 12-1, pp. 47—57. [In Russ].

12. Potapov A. A. Fractal models and methods based on scaling in fundamental and applied problems of modern physics. Neobratimye protsessy v prirode i tekhnike. Sbornik nauchykh trudov. Vyp. II [Irreversible processes in nature and technology. Collection of scientific papers, issue II], Moscow, 2008, pp. 5—107. [In Russ].

13. Amosov O. S., Muller N. V. Application of wavelet and fractal analysis methods for mathematical and numerical modeling of time series. Modern high technologies. 2014, no. 3, pp. 122—124. [In Russ], available at: https://top-technologies.ru/ru/article/view?id=34124 (accessed 21.11.2023).

14. Akhmetkhanov R. S. Application of fractal theory and wavelet analysis to identify time series features in system diagnostics. Vestnik nauchno-tekhnicheskogo razvitiya — Natsional'naya Tekhnologicheskaya Gruppa. 2009, no. 1 (17), pp. 26—31. [In Russ].

15. Marwan N., Romano M. C., Thiel M., Kurths J. Recurrence plots for the analysis of complex systems. Physics Reports. 2007, vol. 438, pp. 237—329. DOI: 10.1016/j.physrep.2006.11.001.

16. Belkov S. A., Malygin. V. Using a neural network to detect and identify interference when receiving a noise-like signal. Physics of wave processes and radio engineering systems. Physics of Wave processes and radio systems. 2019, vol. 22, no. 2, pp. 37—43. [In Russ]. DOI: 10.18469/18103189.2019.22.2.37-43.

17. Merkusheva A. V. Application of a neural network for the current analysis of a non-stationary signal (speech) represented by its wavelet mapping. Research and optimization of a neural network. Scientific instrumentation. 2003, vol. 13, no. 1, pp. 72—84. [In Russ].

18. Beloglazov D. A. Features of neural network solutions, advantages and disadvantages, application prospects. Izvestiya SFedU. Engineering sciences. 2008, no. 7, pp. 105—110. [In Russ].

19. Andreev V. V., Slavtsky L. A., Slavtskaya E. V. Signal processing by direct propagation neural network: approximation and decision-making. Vestnik Chuvashskogo universiteta. 2022, no. 1, pp. 14—22. [In Russ]. DOI: 10.47026/1810-1909-2022-1-14-22.

20. Filaretov G. F., Buchaala Z. Development of algorithms for detecting time series disorders based on nonparametric hypothesis testing criteria. Bulletin of Moscow power engineering institute. 2021, no. 3, pp. 67—77. [In Russ]. DOI: 10.24160/1993-6982-2021-3-67-77.

21. Spivak V. S. Numerical comparison of the most popular rapid procedures for detecting a breakdown. Proceedings of Moscow institute of physics and technology (state university). 2020, vol. 12, no. 2(46), pp. 88—98. [In Russ]. DOI: 10.53815/20726759_2020_12_2_88.

22. Aminikhanghahi S., Cook D. J. A Survey of methods for time series change point detection. Knowledge and Information Systems. 2017, vol. 51, no. 2, pp. 339—367. DOI: 10.1007/s10115-0160987-z.

23. Mata A. S. Complex networks: a Mini-review. Brazilian Journal of Physics. 2020, vol. 50, pp. 658—672. DOI: 10.1007/s13538-020-00772-9.

24. Boisen M. B., Gibbs G. V., Zhang Z. G. An application of graph theory to the estimation of bond numbers in crystals. Computers & Mathematics with Applications. 1992, vol. 23, no. 10, pp. 99—102. DOI: 10.1016/0898-1221(92)90060-u.

25. Sohn I. Small-world and scale-free network models for IoT systems. Mobile Information Systems. 2017, vol. 61, pp. 1—9. DOI: 10.1155/2017/6752048.

26. Raigorodsky A.M. Models of random graphs and their applications. Proceedings of Moscow institute of physics and technology (state university). 2010, no. 4. [In Russ], available at: https://cyberleninka.ru/article/n/modeli-sluchaynyh-grafov-i-ih-primeneniya (accessed 11.03.2024.

27. Barabási A.-L., Albert R. Emergence of scaling in random networks. Science. 1999, vol. 286, pp. 509—512. DOI: 10.1126/science.286.5439.509.

28. Lacasa L., Luque B., Luque J., Nuno J. C. The visibility graph. A new method for estimating the hurst exponent of fractional Brownian motion. Europhysics Letters. 2009, vol. 86, pp. 30001—30005. DOI: 10.1209/0295-5075/86/30001.

29. Luque B., Lacasa L., Luque J., Ballesteros F. J. Horizontal visibility graphs: Exact results for random time series. Physical Review. 2009, vol. E80, article 046103. DOI: 10.1103/PhysRevE.80.046103.

30. Gao Z., Cai Q., Yang Y., Dang W., Zhang S. Multiscale limited penetrable horizontal visibility graph for analyzing nonlinear time series. Scientific Reports. 2016, vol. 6, article 35622. DOI: 10.1038/ srep35622

31. Rosales-Pérez J. A., Canto-Lugo E., Valdés-Lozano D., Huerta-Quintanilla R. Temperature time series analysis at Yucatan using natural and horizontal visibility algorithms. PLoS ONE. 2019, vol. 14, no. 12, article e0226598. DOI: 10.1371/journal.pone.0226598.

32. Kuular E. K., Trufanov A. I., Afanasyev A. D., Tikhomirov A. A., Berestneva O. G. Network platform for the analysis of sound information. Sbornik nauchnykh trudov IV Mezhdunarodnoy nauchnoy konferentsii «Informatsionnye tekhnologii v nauke, upravlenii, sotsial'noy sfere i meditsine» [Collection of scientific papers of the IV International Scientific Conference «Information technologies in science, management, social sphere and medicine»], Tomsk, 2017, pp. 240—243. [In Russ].

33. Silva V. F., Silva M. E., Ribeiro P., Silva F. Time series analysis via network science: Concepts and algorithms. WIREs Data Mining and Knowledge Discovery. 2021, vol. 11, no. 3. DOI: 10.1002/ widm.1404.

34. Afsharizand B., Chaghoei P. H., Kordbacheh A. A., Trufanov A., Jafari G. Market of stocks during crisis looks like a flock of birds. Entropy. 2020, vol. 22, article 1038. DOI: 10.3390/e22091038.

35. Silva V. F., Silva M. E., Ribeiro P., Silva F. Novel features for time series analysis: a complex networks approach. Data Mining and Knowledge Discovery. 2022, vol. 36, pp. 1062—1101. DOI: 10.1007/s10618-022-00826-3.

36. Silva V. F., Silva M. E., Ribeiro P., Silva F. Multilayer quantile graph for multivariate time series analysis and dimensionality reduction. International Journal of Data Science and Analytics. 2024. DOI: 10.1007/s41060-024-00561-6.o.

37. da Costa F. L., Rodrigues F. A., Travieso G., Villas Boas P. R. Characterization of complex networks. A survey of measurements. Advances in Physics. 2007, vol. 56, no. 1, pp. 167—242. DOI: 10.1080/00018730601170527.

38. Ferreira L. N. From time series to networks in R with the ts2net Package. 2022. arXiv:2208.09660 [cs.SI]. 24 p. DOI: 10.48550/arXiv.2208.09660.

39. Luque B., Lacasa L., Ballesteros F., Luque J. Horizontal visibility graphs: Exact results for random time series. Physical Review E. 2009, vol. 80, no. 4, article 046103. DOI: 10.1103/physreve.80.046103.

40. Carmona-Cabezas R., Gomez-Gomez J., Gutierrez de Rave E., Jimenez-Hornero F. J. A sliding window-based algorithm for faster transformation of time series into complex networks. 2023. arXiv:2311.10688 [physics.data-an], 33 p. DOI: 10.1063/1.5112782.

41. Bastian M., Heymann S., Jacomy M. Gephi: An open source software for exploring and manipulating networks. Proceedings of the International AAAI Conference on Web and Social Media. 2009, vol. 3(1), pp. 361—362. DOI: 10.1609/icwsm.v3i1.13937.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.