Concept of large-diameter drilling assembly

The technology of drilling large-diameter multifunction boreholes for rescuing, construction, airing and process operations is discussed. The integrated methods of bottomhole cleaning with simultaneous core disintegration using concurrently compressed air and mudfluid are proposed. Turbulation of compressed air and mud fluid at the bottomhole intensifies the bottomhole washing and increases the rate of penetration. The geometry of large-diameter hole drilling with a pilot hole and with full-diameter drilling is developed. The engineering solution on wall scraping in large-diameter boreholes is presented. The advantage of the successive drilling-out technology for large-diameter boreholes is its realizability using a single drill rig. Given overall harmonization of units, tools and couplings, it is possible to reduce greatly the price of drilling assemblies, which can allow essential saving of drilling cost saving. Core drilling of large-diameter boreholes is complicated by the requirement to remove heavy cores from holes. When core is destructed into large fragments, multiple drilling-out might be required. Arrangement of a large-diameter borehole for life-saving is a separate task which is solved concurrently with drilling. A new indentation tool with a tungsten carbide insert of a special geometry is proposed.

Keywords: concept, drilling tool, large-diameter drilling, vibratory-percussion indenters, nozzle sharpening geometry, pilot hole drilling assembly, shaving, hard rocks.
For citation:

Pelipenko N. A., Ignatenko I. M., Protsuk I. S., Baklanov R. R. Concept of largediameter drilling assembly. MIAB. Mining Inf. Anal. Bull. 2021;(4):16-32. [In Russ]. DOI: 10.25018/0236_1493_2021_4_0_16.

Acknowledgements:
Issue number: 4
Year: 2021
Page number: 16-32
ISBN: 0236-1493
UDK: 622.24.051.001.5; 622.86
DOI: 10.25018/0236_1493_2021_4_0_16
Article receipt date: 01.11.2019
Date of review receipt: 16.11.2020
Date of the editorial board′s decision on the article′s publishing: 10.03.2021
About authors:

N.A. Pelipenko1, Dr. Sci. (Eng.), Professor, e-mail: pelipenkona@mail.ru,
I.M. Ignatenko1, Cand. Sci. (Eng.), Director, Institute of Earth Sciences, e-mail: ignatenko_i@bsu.edu.ru,
I.S. Protsuk, Leading Specialist, IGGIS LLC, e-mail: geolog_ivan@mail.ru,
R.R. Baklanov1, Graduate Student, e-mail: baklanovrr@mail.ru,
1 Belgorod State National Research University, 308015, Belgorod, Russia.

 

For contacts:

N.A. Pelipenko, e-mail: pelipenkona@mail.ru.

Bibliography:

1. Pelipenko N. A., Protsuk I. S., Dobrynin V. E., Grehovodov I. I. For the question about the physics of the hard rock drilling. Bulletin of the Association of Drilling Contractors. 2016, no 3, pp. 14—18. [In Russ].

2. Pelipenko N. A., Protsuk I. S., Baklanov R. R. Statistical investigation of the indicators of mountain rocks in the construction of MG «Force Siberia». Bulletin of the Association of Drilling Contractors. 2018, no 2, pp. 44–48. [In Russ].

3. Yilmaz N. G., Yurdakul M., Goktan R. M. Prediction of radial bit cutting force in highstrength rocks using multiple linear regression analysis. International Journal of Rock Mechanics and Mining Sciences. 2007. Vol. 44. No 6. P. 962—970.

4. Murakami Yukitaka. Metal fatigue: effects of small defects and nonmetallic inclusions. Elsevier, 2002, P 390.

5. Dewangan S., Chattopadhyaya S., Hloch S. Wear assessment of conical pick used in coal cutting operation. Rock Mechanics and Rock Engineering. 2015. Vol. 48. No 5. Pp. 2129—2139.

6. Bilgin N., Copur H., Balci C. Effect of replacing disc cutters with chisel tools on performance of a TBM in difficult ground conditions. Tunnelling and Underground Space Technology. 2012. Vol. 27. No 1. Pp. 41—51.

7. Bao R. H. Estimating the peak indentation force of the edge chipping of rocks using single point-attack pick. Rock Mechanics and Rock Engineering. 2011. Vol. 44. No 3. Pp. 339—347.

8. Evans I. A theory of the cutting force for point-attack picks. Geotechnical and Geological Engineering. 1984. Vol. 2. No 1. Pp. 63—71.

9. Goktan N. A semi-empirical approach to cutting force prediction for point-attach picks. Journal of the Southern African Institute of Mining and Metallurgy. 2005. Vol. 105. No 4. Pp. 257—263.

10. Liu S. Experimental research on wear of conical pick interacting with coal-rock. Engineering Failure Analysis. 2017. Vol. 74. Pp. 172—187.

11. Akcin N. A., Su O. Numerical simulation of rock cutting using the discrete element method. International Journal of Rock Mechanics and Mining Sciences. 2011. Vol. 48. No 3. Pp. 434—442.

12. Dewangan S., Chattopadhyaya S., Hloch S. Investigation into coal fragmentation analysis by using conical pick. Procedia Materials Science. 2014. Vol. 5. Pp. 2411—2417.

13. Rojek J., Oñate E., Labra C., Kargl H. Discrete element modelling of rock cutting. Particle-Based Methods. 2011. Pp. 247—267. DOI: 10.1007/978-94-007-0735-1_10.

14. van Wyk G., Els D., Akdogan G., Bradshaw S., Sacks N. Discrete element simulation of tribological interactions in rock cutting. International Journal of Rock Mechanics and Mining Sciences. 2014. Vol. 65. Pp. 8—19.

15. Zhang H., Wang M. L., Han Q. K., Sun W. Dynamic behaviors of the cutterhead driving system in tunneling boring machine with impact. Journal of Mechanical Engineering Science. 2016. Vol. 230. Pp. 2427–2437.

16. Liu Y., Zhang G.C. Numerical simulation of large-diameter annular pressure loss in riser segment of deep-water drilling. Advanced Materials Research. 2014. Vol. 868. Pp. 510—516.

17. D’Ambrosio P., Hart S., Prochaska E., Bouska R., Tinsley D. Cost-effective ultralarge-diameter polycrystalline-diamond-compact-bit drilling in deepwater gulf of Mexico. SPE Drilling & Completion. 2014. Vol. 29. No 01. Pp. 47–63.

18. Aburto M. Drilling optimization for salt caprock in deepwater gulf of Mexico. Paper prepared for the Drilling & Completing Trouble Zones (DCTZ) Forum. 2011.

19. Barton S., Weeden R., Mensa-Wilmot G. Solving the salt challenge: unique drill bit philosophy delivers breakthrough performance in the gulf of Mexico. Paper OTC-20425 presented at the Offshore Technology Conference. 2010. DOI: 10.4043/20425-MS.

20. Chamat E., Israel R. Efficient and reliable vertical drilling of top holes with RSS in deepwater GOM. Paper SPE 151395 presented at the IADC/SPE Drilling Conference and Exhibition. 2012. DOI: 10.2118/151395-MS.

21. Chatar C., D’Ambrosio P., Clyde R. Directional Drilling Challenges for Deep Wells — Modeling Side-Force Limits. Paper AADE 2009NTCE-14-03 presented at the American Association of Drilling Engineers. 2009.

22. Chatar C., Israel R., Cantrell A. Drilling Deep in DeepWater: What It Takes to Drill Past 30,000 ft. Paper SPE 128190 presented at the IADC/SPE Drilling Conference and Exhibition. 2010. DOI: 10.2118/128190-MS.

23. Dykstra M., Grauwmans R. Business value of stick-slip mitigation: Rejuvenation of soft torque technology. IADC Stick-Slip Mitigation Workshop. 2010.

24. Kull B. J., Duff R., Clarke A. Salt Drilling While Underreaming Behaviors Illuminated by Distributed Downhole Measurements. Paper SPE 124121 presented at the 2009 SPE Annual Technical Conference and Exhibition. 2009. DOI: 10.2118/124121-MS.

25. Kyllingstad A., Nessjoen P. J. Hardware-in-the-loop simulations used as a cost-efficient tool for developing an advanced stick-slip prevention system. Paper SPE 128223 presented at the IADC/SPE Drilling Conference and Exhibition. 2010. DOI: 10.2118/128223-MS.

26. Kyllingstad A., Nessjoen P. J., D’Ambrosio P. Field experience with an active stick-slip prevention system. Paper SPE 139956 presented at the SPE/IADC Drilling Conference and Exhibition. 2011. DOI: 10.2118/139956-MS.

27. Neuschaefer R., Sirkin G., Tollefsen E. Realizing substantial rig time savings with nextgeneration LWD and directional services. Paper presented at the Global Drilling Conference. 2005.

28. Stroud D., Bird N., Norton P. Roller reamer fulcrum in point-the-bit rotary steerable system reduces stick-slip and backward whirl. Paper SPE 151603 presented at the IADC/SPE Drilling Conference and Exhibition. 2012. DOI: 10.2118/151603-MS.

29. Teasdale P., Chafai R., Saeed A. BHA modeling coupled with high frequency downhole vibration data provides unique solution to inconsistent drilling performance in south iraq oilfield development. Paper SPE 156445 presented at the IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition. 2012. DOI: 10.2118/156445-MS.

30. Repin A. A., Smolyanitsky B. N., Alekseev S. E., Popelyuh A. I., Timonin V. V., Karpov V. N. Submersible high-pressure hammers for open cast mining. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2014, no 5, pp. 157—167. [In Russ].

31. Fedorov L. N., Ermakov S. A. Strength of inserts made of hard and superhard materials under wedge clamping action. MIAB. Mining Inf. Anal. Bull. 2018, no 12, pp. 142—150. [In Russ]. DOI: 10.25018/0236-1493-2018-12-0-142-150.

32. Tret'yak A. A. Teoreticheskoe obosnovanie, razrabotka konstruktivnykh parametrov tekhnologii bureniya skvazhin koronkami, armirovannymi almazno-tverdosplavnymi plastinami [Theoretical substantiation, development of design parameters of the technology of drilling wells with crowns reinforced with diamond-hard-alloy plates], Doctor’s thesis, Novocherkassk, YURGPU, 2017, 319 p.

33. Sykchin M. E. Sozdanie kol'tsevogo geologorazvedochnogo pnevmoudarnika so vstroennym ezhektornym ustroystvom [Creation of a ring exploration hammer with a built-in ejector device], Candidate’s thesis, Novosibirsk, 1993.

34. Lipin A. A., Kharlamov Yu. P., Timonin V. V. Study of the circulation system of a hammer with central slurry transport. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2013, no 2, pp. 91—99. [In Russ].

35. Kostylev A. D., Danilov B. B., Smolyanitsky B. N., Syryamin Yu. N., Kogan D. I., Savelyev V. N. A new downhole annular hammer for drilling exploration wells. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 1985, no 2, pp. 53—57. [In Russ].

36. Petreev A. M., Primychkin A. Yu. Influence of the type of air distribution system on the energy performance of a pneumatic impact assembly of a ring impact machine. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2015, no 3, pp. 117—123. [In Russ].

37. Petreev A. M., Vorontsov D. S., Primichkin A. Yu. Annular elastic valve in pneumatic impact machines. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2010, no 4, pp. 56—65. [In Russ].

38. Alekseev S. E., Timonin V. V., Kokoulin D. I., Shakhtorin I. O. Creation of a small-sized hammer for drilling exploratory wells. Mining sciences: fundamental and applied issues. 2015, no 2, pp. 187—193. [In Russ].

39. Karpov V. N., Shakhtorin I. O. On the study of the causes of defects in structural elements of submersible hammers. Sbornik trudov Vserossiyskoy konferentsii dlya studentov, aspirantov i molodykh uchenykh s elementami nauchnoy shkoly «Gornyatskaya smena-2015» [Proceedings of the all-russian conference for students, post-graduate students and young scientists with elements of the Gornyat shift 2015 scientific school], Novosibirsk: izd-vo IGD SO RAN, 2015, pp. 10—15. [In Russ].

40. Matveev Yu. A., Kardysh G. V. Patent RU 2235848, MPK 7E21V 25/00. 10.09.2004. 41. 

41. Belousov A. V. Patent RU 2090729, MPK 6 E 21 V 4/14, E 21 S 3/24. 20.09.1997. 

42. Green C. J. Patent GB 0407947, MPK 8E 21V10/3, E21V4/14S. 23.12.2008.

43. https://es.wikipedia.org/w/index.php?title=Rescate_de_la_mina_San_Jos%C3%A9& oldid=117177947.

44. Koronki dlya kolonkovogo bureniya skvazhin bol'shogo diametra. GOST R 51639-2000 [Crowns for core drilling of large diameter wells. State Standart R 51639-2000], Moscow, Izdvo standartov, 2000.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.