Design concepts for explosion products locking in chamber

Due to the increase in the volume of mine workings, there is a need to solve acute mining issues. Despite the long-established standard procedure of blasting with stemming, there are conflicting approaches in use of stemming due to technical and technological difficulties. The authors investigate the quality of rock mass explosive preparation for further processing. Provide data helpful to find an effective way of keeping explosion products in the explosion chamber. Study combined stemming impact on seismic explosion wave parameters. The conclusions and relevant decisions are provided based on industrial trials results and further data processing. All things considered, the most effective is the combined stemming type, such as locking and bulk one. This kind of stemming enables to keep the explosion products in chamber due to the stemming wedge and bulk stemming (fines, sand) keeps things by its weight. The shock wave passing through the funnel spacer repeatedly reflects from the inner walls, interacting with the borehole walls for a longer time. The detonation products flow slowly through the stemming outlet without any shock impact.

Keywords: explosion, detonation product, granulometric composition, stemming, seismic wave, locking device, collapse of the mountain mass, locking device.
For citation:

Moldovan D. V., Chernobay V. I., Sokolov S. T., Bazhenova A. V. Design concepts for explosion products locking in chamber. MIAB. Mining Inf. Anal. Bull. 2022;(6−2):5—17. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_5.

Acknowledgements:
Issue number: 6
Year: 2022
Page number: 5-17
ISBN: 0236-1493
UDK: 622.235.523
DOI: 10.25018/0236_1493_2022_62_0_5
Article receipt date: 14.01.2022
Date of review receipt: 26.04.2022
Date of the editorial board′s decision on the article′s publishing: 10.05.2022
About authors:

Moldovan D. V., Cand. Sci. (Eng.), associate professor Department of Blasting, https:// orcid.org/0000-0003-2227-6625, St. Petersburg Mining University, 199106, St. Petersburg, Vasilievsky Island, 21 line 2, Russia, Moldovan_DV@pers.spmi.ru;
Chernobay V. I., Cand. Sci. (Eng.), associate professor Department of Blasting, https:// orcid.org/0000-0002-6858-8854, St. Petersburg Mining University, 199106, St. Petersburg, Vasilievsky Island, 21 line 2,chernobay_vi@pers.spmi.ru;
Sokolov S. T., Cand. Sci. (Eng.), assistant Department of Blasting, https://orcid.org/00000003-3153-7874, St. Petersburg Mining University, 199106, St. Petersburg, Vasilievsky Island, 21 line 2, s175017@stud.spmi.ru;
Bazhenova A. V., postgraduate Department of Blasting, St. Petersburg Mining University, 199106, St. Petersburg, Vasilievsky Island, 21 line 2, bazhenova.schura@ya.ru.

 

For contacts:
Bibliography:

1. Trubetskoy K. N., Galchenko Y. P. Methodology for estimating promising development paradigm for mineral mining and processing industry. Journal of Mining Science. 2015, vol. 51, pp. 407–415. DOI: 10.1134/S1062739115020271.

2. Viktorov S. D. The explosive destruction of the rock is the basis of progress in mining. MIAB. Mining informational and analytical bulletin. 2015, no. 1, pp. 63–75. [In Russ].

3. Zhang Z. X. Rock Fracture and Blasting. Theory and Applications. Elsevier. Butterworth-Heinemann: Amsterdam, The Netherlands. 2016, 528 p.

4. Silva J., Worsey T., Lusk B. Practical assessment of rock damage due to blasting. International Journal of Mining Science and Technology. 2018, vol. 29, pp. 379–385.

5. Monjezi M., Shahriar K., Dehghani H., Namin F. S. Environmental impact assessment of open pit mining in Iran. Environmental Earth Sciences. 2008, vol. 58, pp. 205–216.

6. Kim G., Jang J., Kim K. Y., Yun T. S. Characterization of orthotropic nature of cleavage planes in granitic rock. Engineering Geology. 2020, vol. 265, 105432. DOI: 10.1016/j. enggeo.2019.105432.

7. Sasaoka T., Takahashi Y., Sugeng W., Hamanaka A. Effects of rock mass conditions and blasting standard on fragmentation size at limestone quarries open journal of geology. Open journal of geology. 2015, vol. 5, pp. 331–339.

8. Menjulin M. G., Kazmina A. J., Afanasew P. I. Die Einwirkung der Sprengarbeiten auf den Erhaltungszustand des Massivs ausserhalb der Sprengzone mit und ohne Vorspaltenbilding. Scientific reports on resource issues. Freiberg: International University of Resources. 2011, vol. 1, pp. 184–187.

9. Sanchidrián J. A., Ouchterlony F., Segarra P., Moser P. Size distribution functions for rock fragments. International Journal of Rock Mechanics and Mining Sciences. 2014, vol. 71, pp. 81–94.

10. Gospodarikov A. P., Vykhodtsev Ya. N., Zatsepin M. A. Mathematical modeling of seismic explosion waves impact on rock mass with a working. Journal of Mining Institute. 2017, vol. 226, pp. 405–411. [In Russ]. DOI: 10.25515/pmi.2017.4.405.

11. Efremov E. I., Nikiforova V. A. Influence of borehole diameter on the area of contact between explosive and destructible rock and on the yield of fine fractions. Daily resource energy saving mining technology. 2012, vol. 2(10), pp. 9–15. [In Russ]

12. Overchenko M. N., Tolstunov S. A., Mozer S. P. Influence of mining-geological conditions and technogenic factors on blastholes stability during open mining of apatitenepheline ores. Journal of Mining Institute. 2018, vol. 231, pp. 239–244. [In Russ] DOI: 10.25515/pmi.2018.3.239.

13. Kurchin G. S., Lobatsevich M. A., Petushkova T. A., Efremov P. Yu. Efficiency of application of a bottom hole in wells. Earth Sciences: yesterday, today, tomorrow: proceedings of the IV international scientific conference (Kazan, may 2018). Kazan: Young scientist. 2018, pp. 17–19. [In Russ]

14. Mihail M., Isheyskiy V., Vadim D. Drilling and blasting influence on the process of dust particles formation. International Journal of Mechanical Engineering and Technology. 2018, vol. 9, pp. 97-–103.

15 Wang Y., Wang H., Cui C., Zhao B. Investigating Different Grounds Effects on Shock Wave Propagation Resulting from Near-Ground Explosion. Applied Sciences. 2019. vol. 9, pp. 1–17. DOI: 10.3390/app9173639.

16. Bukhartsev V. N., Pham N. T. The effect of the structural model on estimating the bearing capacity of the ground base. Power Technology and Engineering. 2018, vol. 52(4), pp. 389−394. DOI:10.1007/s10749-018-0963-8.

17. Dipaloke M., Viladkar M. N., Mahendra S. Corrigendum to A multiple-graph technique for preliminary assessment of ground conditions for tunneling. International Journal of Rock Mechanics and Mining Sciences. 2018, vol. 9(17), pp. 278–286. DOI: 10.1016/ j.ijrmms.2017.10.010.

18. Khandelwal M., Singh T. H. Evaluation of blast-induces vibration predictors. Soil Dynamics and Earthquake Engineering. 2007, vol. 27, iss. 2, pp. 116–125. DOI: 10.1016/j. soildyn.2006.06.004.

19. Öncü M. E., Yön B., Akkoyun Ö., Taşkiran T. Investigation of blast-induced ground vibration effects on rural buildings. Structural Engineering and Mechanics. 2015, vol. 54 (3), pp. 545–560. DOI: 10.12989/sem.2015.54.3.545.

20. Koteleva N., Frenkel I. Digital Processing of Seismic Data from Open-Pit Mining Blasts. Applied Sciences. 2021, vol. 11, pp. 380–383. DOI: 10.3390/app11010383.

21. Kotikov D. A., Shabarov A. N., Tsirel S. V. Connecting seismic event distribution and tectonic structure of rock mass. Gornyi Zhurnal. 2020, vol. (1), pp. 28–32. [In Russ]. DOI: 10.17580/gzh.2020.01.05.

22. Roy M. P., Singh P. K., Singh G., Monjezi M. Influence of initiation mode of explosives in opencast blasting on ground vibration. Transactions of the Institutions of Mining and Metallurgy, Section A: Mining Technology. 2007, vol. 116 (1), pp. 1–6. DOI: 10.1179/174328607X161888.

23. Kotikov D. A., Tsirel S. V. Dependence of the distribution of seismic events on the location of geological faults. Rock Mechanics for Natural Resources and Infrastructure Development. Proceedings of the 14th International Congress on Rock Mechanics and Rock Engineering, ISRM. 2019, pp. 1448–1455.

24. Bormann P. Engdahl E. R., Kind R., Bormann Ed. Seismic wave propagation and Earth models. New Manual of Seismological Observatory Practice. Potsdam: German Research Center for Geosciences. 2012, pp. 1–105. DOI: 10.2312/GFZ.NMSOP-2_ch2.

25. Koteleva N., Khokhlov S., Frenkel I. Digitalization in Open-Pit Mining: A New Approach in Monitoring and Control of Rock Fragmentation. Applied Sciences. 2021, vol. 11(22). pp. 1–16. DOI: 10.3390/app112210848.

26. Gendler S. G., Borisovsky I. A. Aerodynamic control in open pit gold mining MIAB. Mining Inf. Anal. Bull. 2021, vol. 2, pp. 99–107. [in Russ]. DOI: 10.25018/0236-1493-20212-0−99−107.

27. Shevkun E., Leshchinsky A., Plotnikov A. Special aspects of explosive loosening with minimal rock displacement. E3S Web of Conferences. 2020, vol. 192, pp. 1−7. DOI: 10.1051/e3sconf/202019201003.

28. Heath D. J., Gad E. F., Wilson J. L. Blast Vibration and Environmental Loads Acting on Residential Structures: State-of-The-Art Review. Journal of Performance of Constructed Facilities. 2016, vol. 30 (2), pp. 1–6. DOI: 10.1061/(ASCE)CF.1943−5509.0000750.

29. Vasilets V. V., Afanasev P. I., Pavlovich A. A. Safe operation of mining-and-transport system under impact of seismic shot waves. MIAB. Mining Inf. Anal. Bull. 2020, no. 1, pp. 26–35. [In Russ] DOI: 10.25018/0236-1493-2020-1-0−26−35.

30. Leschinsky A. V., Shevkun E. B., Lysak Y. A. The effect of direction of initiation of charges explosives for rock microcracking solid rock. MIAB. Mining Inf. Anal. Bull. 2019, no. 2, pp. 50–57. DOI:10.25018/0236-1493-2019-02−0-50−57.

31. Belin V. A., Gorbonos M. G., Astakhov E. O. Influence of primers on blasting efficiency & safety. Gornyi Zhurnal. 2019, vol. 7, pp. 63–67. [In Russ]. DOI: 10.17580/ gzh.2017.07.12.

32. Fu X., Sheng Q., Zhang Y., Chen J. Application of the discontinuous deformation analysis method to stress wave propagation through a one-dimensional rock mass. International Journal of Rock Mechanics and Mining Sciences. 2015, vol. 80, pp. 155–170. DOI: 10.1016/j.ijrmms.2015.09.017.

33. Momeni A., Karakus M., Khanlari G. R., Heidari M. Effects of cyclic loading on the mechanical pro,perties of a granite. International Journal of Rock Mechanics and Mining. 2015, vol. 77, pp. 89–96. DOI: 10.1016/j.ijrmms.2015.03.029.

34. Leshchinskiy A., Shevkun E., Lysak Y., Plotnikov A. Features of schemes of the explosive loosening, with big slowdowns. E3S Web of Conferences. 2020, vol. 192, 01024. DOI: 10.1051/e3sconf/20201920102435.

35. Belin V. A., Suprun V. I., Agafonov Yu. G., Kuznetsov V. A. Features of blasting operations in extraction of alabaster in water protection zone. Gornyi Zhurnal. 2017, vol. 3, pp. 37–42. [In Russ]. DOI: 10.17580/gzh.2017.03.07.

36. Yastrebova K. N., Vladimirovich M. D., Ivanovich C. V., Influence of the nature of the outflow of explosion products from blast holes and boreholes on the efficiency of rock destruction. E3S Web of Conferences. 2020, vol. 174, pp. 1–6. DOI: 10.1051/ e3sconf/202017401017.

37. Isheyskiy V., Marinin M., Dolzhikov V. Combination of fracturing areas after blasting column charges during destruction of rocks. International Journal of Engineering Research and Technology. 2019, vol. 12 (12), pp. 2953–2956.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.