Correction of Depth-Velocity Models by Gravity Prospecting for Hard-to-Reach Areas of the Shelf Zone

a large number of oil and gas reserves are now well surveyed, while the demand for fuel resources continues to grow year by year. As a result, oil and gas companies have started to develop sites with complex geological structures or located in virtually inaccessible regions, such as the Arctic zone. Due to climatic conditions, not all of the Arctic shelf has been surveyed via direct exploration methods. However, the untapped potential of the region provides an impetus for oil and gas companies to develop new processes that use quick and accessible geophysical methods. This work outlines one such data interpretation algorithm for potential use in locations about which minimal information is known in advance. The main idea of this article is to correct structural constructions based on the use of gravity prospecting in the absence of wells in the study area. Based on the results of the study, the authors propose to use an integrated interpretation of gravity and seismic data to reduce the ambiguity of solving inverse problems.

Keywords: seismic survey, gravity survey, joint inversion, modeling, shelf zone.
For citation:

Mingaleva T., Gorelik G., Egorov A., Gulin V. Correction of Depth-Velocity Models by Gravity Prospecting for Hard-to-Reach Areas of the Shelf Zone. MIAB. Mining Inf. Anal. Bull. 2022;(10-1):77—86. [In Russ]. DOI: 10.25018/0236_1493_2022_101_0_77.

Acknowledgements:
Issue number: 10
Year: 2022
Page number: 77-86
ISBN: 0236-1493
UDK: 622
DOI: 10.25018/0236_1493_2022_101_0_77
Article receipt date: 20.03.2022
Date of review receipt: 27.06.2022
Date of the editorial board′s decision on the article′s publishing: 10.09.2022
About authors:

Mingaleva T. A.1, postgraduate student, e-mail: tatiana.mingaleva@bk.ru, ORCID ID: 0000-0002-6867-1981;
Gorelik G. D.1, Cand. Sci. (Eng.), Associate Professor, e-mail: gleb.gorelik@yandex.ru, ORCID ID: 0000-0002-9890-5275,
Egorov A. S.1, Dr. Sci. (Geol. Mineral.), professor, Head of the Department of Geophysics, e-mail: egorov_as@pers.spmi.ru, ORCID ID: 0000-0002-3501-9145;
Gulin V. D.2, Head of Exploration Geophysics, e-mail: gulin.vd@gazpromneft-ntc.ru,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia;
2 Gazpromneft NTC LLC, St. Petersburg, Russian Federation.

 

For contacts:

Mingaleva T. A., e-mail: tatiana.mingaleva@bk.ru.

Bibliography:

1. Rybak, J., Khayrutdinov, M., Kuziev, D., et al. (2022). Prediction of the geomechanical state of the rock mass when mining salt deposits with stowing. Journal of Mining Institute, 253, 61−70. DOI: 10.31897/PMI.2022.2.

2. Alexandrova, A. G., Smirnov A. N. (2019). The state of resources and prospects for the development of the Arctic shelf zone. Geology of seas and oceans. Materials of the 23rd International Scientific Conference (School) on Marine Geology, 18−22.

3. Chromcak, J., Farbak, M., Ivannikov, A., et al. (2021). Remote Sensing Data Analysis for the Ecological Stability Purposes. IOP Conference Series: Earth and Environmental Science, 906(1), 012068. DOI: 10.1088/1755−1315/906/1/012068.

4. Archegov, V. B., Nefedov Yu. V. (2015). The strategy of oil and gas exploration in the assessment of the fuel and energy potential of the shelf of the Arctic seas of Russia. Journal of Mining Institute, 212, 6−12.

5. Dmitrievsky, A. N., Belonin, M. D. (2004). Prospects for the development of oil and gas resources of the Russian shelf. Nature, 9, 3−10.

6. Dubinin, E. P., Kokhan A. V., Filaretova A. N. (2018). Bottom relief of the Arctic Ocean. Life of the Earth, 40(3), 262−282.

7. Krapivsky, E. I., Minnegulova, G. S., Sadykova, R. M. (2013). Features of the construction of an underground low-temperature main pipeline for a mixture of liquefied hydrocarbon gases in the Far North. GIAB, 12, 270−275.

8. Sysoev, A. P. (2018). Multivariance of the velocity model in the problem of structural constructions based on seismic and well data. Journal of Mining Institute, 233, 459−470. DOI: 10.31897/pmi.2018.5.459.

9. Prischepa, O. M., Nefedov, Yu. V. (2020). Raw materials base of hard-to-extract oil reserves of Russia. Periódico Tchê Química, 34(17), 915−924. DOI: 10.52571/PTQ.v17. n34.2020.939_P34_pgs_915_924.pdf.

10. Saitgaleev, M. M. Senchina, N. P., Sokolova, J. A. (2019). Application of the Method of Ion-Selective Electrodes in Exploration Work on the Sea Shelf. Conference Proceedings, Marine Technologies, 1−11. DOI: 10.3997/2214−4609.201901811.

11. Movchan, I. B., Yakovleva, A. A. (2014). The way of structural interpretation of potential fields under the condition of minimum a priori geological information. Biosciences Biotechnology Research Asia, 11, 163−168.

12. Jones, C. M. (2018). The oil and gas industry must break the paradigm of the current exploration model. Journal of Petroleum Exploration and Production Technology, 8, 131−142. DOI: 10.1007/s13202−017−0395−2.

13. Spichak, V. V. (2009). Modern approaches to complex inversion of geophysical data. Geofizika, 5, 10−19.

14. Lavrenko, S. A., et al. (2019). An energy-efficient unit actuator for tunneling and cleaning operations. Innovative development of the mineral resources sector: challenges and prospects. 11th Russian-German Raw Materials Conference, 287−292.

15. Mellors, R. J. et al. (2014). Stochastic Joint Inversion Modeling Algorithm of Geothermal Prospects. Proceedings Thirty-Ninth Workshop on Geothermal Reservoir Engineering Stanford University, 24−26.

16. Moorkamp, M. et al. (2006). Joint inversion of MT and seismic receiver function data using a genetic algorithm. Proceedings 18th IAGA WG 1.2 Workshop on EM Induction in the Earth.

17. Molodtsov, D. M., Troyan V. N. (2017). Joint multiphysics inversion using joint sparsity regularization. SEG International Exposition and 87th Annual Meeting, 1262−1267.

18. Moorkamp, M., Jones A., Eaton D. (2007). Joint inversion of teleseismic receiver functions and magnetotelluric data using a genetic algorithm: are seismic velocities and electrical conductivities compatible. Geophysical Research Letters, 34, L16311. DOI: 10.1029/2007GL030519.

19. Zhou, D., O’Connell D., Wang W., et al. (2014). 3D joint inversion of seismic traveltime and gravity data: a case study. SEG Denver 2014 Annual Meeting, 3148−3152. DOI: 10.1190/segam2014−1556.1.

20. Colombo, D., Stefano, M. (2007). Geophysical modeling via simultaneous joint inversion of seismic, gravity, and electromagnetic data: Application to prestack depth imaging. The Leading Edge, 26, 326−331.

21. Lines, L. R., Schultz A. K., et al. (1988). Cooperative inversion of geophysical data. Geophysics, 53, 8−20. DOI: 10.1190/1.1442403.

22. Moorkamp, M., Linde N., et al. (2016). Integrated Imaging of the Earth: Theory and Applications. Washington: Wiley.

23. Hu, W., Abubakar, A., et al. (2009). Joint electromagnetic and seismic inversion using structural constraints. Geophysics, 74(6), 99−109. DOI: 10.1190/1.3246586.

24. Gardner, G. H. F., Gardner L. W., Gregory A. R. (1974). Formation velocity and density-The diagnostic basics for stratigraphic traps. Geophysics, 39, 770−780.

25. Urupov, A. K., Levin A. N. (1985). Determination and interpretation of velocities in the method of reflected waves. Moscow: Nedra.

26. Khain, V., Polyakova I. (2007). Sedimentation basins and oil and gas potential of the East Arctic shelf. Oceanology, 47(1), 116−128.

27. Safronov, A. F. (2017). History of geological development of the shelf of the East Siberian Sea. Natural resources of the Arctic and Subarctic, 1(85), 7−12.

28. Nwozor, K., Onuorah L., et al. (2017). Calibration of Gardner coefficient for density– velocity relationships of tertiary sediments in the Niger Delta Basin. Journal of Petroleum Exploration and Production Technology, 7, 627−635. DOI: 10.1007/s13202−017−0313−7.

29. Isaev, V. I. (2008). Density modeling of the sedimentary section basement and forecasting of oil and gas accumulation zones (on the example of Southern Sakhalin and Western Siberia). Pacific Geology, 27(3), 3−17.

30. Parker, R. L. (1972). The rapid calculation of potential anomalies. Geophysical Journal International, 31, 447−455.

31. Boar, M. K. (2001). Gravity model of the crust and upper mantle of Northern Eurasia. Russian Journal of Earth Sciences, 3(2), 125−144

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.