Cryohydrogeology as a key factor in water disposal system design: A case-study of kimberlite pipes in Western Yakutia

Mining of large kimberlite pipes in Western Yakutia is carried out using the opencast and underground methods with advanced water drawdown and flooding protection. Absolutely all pipes feature the presence of reservoir rocks in the cross-section, which hold much brine and produce drain water of higher salinity from 120 to 410 g/l. The volume and salinification of natural brines depend on the cryo-hydro-geological conditions of a certain deposit. Today, the rate of the total brine inflow per all deposits is 9000 m3/day. As the depth of mining grows, the inflow rate increases and is forecasted to reach the peak value of ~121 000 m3/day by 2050. At the present time, all drain water without any chemical treatment is pumped into reservoirs in permafrost or in regional aquifers. An additional factor of the drain water generation is atmospheric fallout in the area of an open pit mine, and meteoric water. The article offers a brief characteristic of cryohydrogeology in kimberlite mine fields in operation. The hydrogeological modeling provides a forecast of change in natural brine inflow per deposits. On the assumption of the actual volume of fresh atmospheric precipitation, the important factor of selecting between the separate and centralized water collection is the forecasted inflow of natural brines and its change with depth. The centralized water collection is selected when the forecasted inflow can balance the atmospheric fallout, which ensures a slight total change in salinity of drain water. In case that the forecasted inflow is deficient to generate drain water of standard quality, a technology-intensive separate water disposal system is to be designed.

Keywords: Yakutia diamond province, kimberlite field, high-salinity natural brines, drain water, carbonate reservoir, permafrost rocks, water disposal, water drainage.
For citation:

Yannikov A. M., Zyryanov I. V., Korepanov A. Yu. Cryohydrogeology as a key factor in water disposal system design: A case-study of kimberlite pipes in Western Yakutia. MIAB. Mining Inf. Anal. Bull. 2023;(5):112-129. [In Russ]. DOI: 10.25018/0236_1493_2023_ 5_0_112.

Issue number: 5
Year: 2023
Page number: 112-129
ISBN: 0236-1493
UDK: 556.38.02
DOI: 10.25018/0236_1493_2023_5_0_112
Article receipt date: 15.12.2022
Date of review receipt: 22.03.2023
Date of the editorial board′s decision on the article′s publishing: 10.04.2023
About authors:

A.M. Yannikov1, Cand. Sci. (Geol. Mineral.), Head of Laboratory, e-mail:, ORCID ID: 0000-0002-2169-123Х,
I.V. Zyrianov, Dr. Sci. (Eng.), Head of Chair, Mirny Polytechnic Institute, Branch of Ammosov North-Eastern Federal University, Mirny, Russia, e-mail:,
A.Yu. Korepanov1, Head of Hydrogeological Research Sector, e-mail: KorepanovAYu@,
1 Yakutniproalmaz Institute, AK «ALROSA», Mirny, Russia.


For contacts:

A.M. Yannikov, e-mail:


1. Kolganov V. F., Akishev A. N., Drozdov A. V. Gorno-geologicheskie osobennosti korennykh mestorozhdeniy almazov Yakutii [Mining and geological features of primary diamond deposits in Yakutia], LAP LAMBERT Academic Publishing, 2015, 576 p.

2. Drozdov A. V. Mining and geological peculiarities of deep layers at Udachaya pipe. MIAB. Mining Inf. Anal. Bull. 2011, no. 3, pp. 153—165. [In Russ].

3. Yannikov A. M., Zyryanov I. V., Korepanov A. Yu., Struchkova A. S. Water drive dynamics and time history prediction in the Low Cambrian aquifer within Daldyn kimberlite field. MIAB. Mining Inf. Anal. Bull. 2022, no. 9, pp. 60—73. [In Russ]. DOI: 10.25018/0236_1493_2022_ 9_0_60.

4. Yannikov A. M. Gidrogeologiya Alakit-Markhinskogo kimberlitovogo polya [Hydrogeology of the Alakit-Markhin kimberlite field], Mirnyy, Izd-vo ZYaNTS/YaNA, 2022, 132 p.

5. Drozdov A. V., Iost N. A., Lobanov V. V. Kriogidrogeologiya almaznykh mestorozhdeniy Zapadnoy Yakutii [Cryohydrogeology of diamond deposits in Western Yakutia], Irkutsk, IrGTU, 2008, 507 p.

6. Drozdov A. V. Underground burial of drainage brines in permafrost rocks (on the example of Udachninsky GOK in Western Yakutia). Geoekologiya. 2005, no. 3, pp. 234—243. [In Russ].

7. Yannikov A. M. Gidrogeologiya Mirninskogo kimberlitovogo polya [Hydrogeology of the Mirny kimberlite field], Mirnyy, Izd-vo ZYaNTS/YaNA, 2021, 240 p.

8. Alekseev S. V., Alekseeva L. P., Gladkov A. S., Trifonov N. S., Serebryakov E. V., Pavlov S. S., Il’in A. V. Brines in deep horizons of the Udachnaya kimberlite pipe. Geodynamics & Tectonophysics. 2018, no. 9(4), pp. 1235—1253. [In Russ]. DOI: 10.5800/GT-2018-9-4-0393.

9. Alexeev S. V., Alexeeva L. P., Vakhromeev A. G. Brines of the Siberian platform (Russia): Geochemistry and processing prospects. Geochemistry. 2020, vol. 117, article 104588. DOI: 10.1016/j.apgeochem.2020.104588.

10. Alexeev S. V., Alexeeva L. P. Hydrogeochemistry of the permafrost zone in the central part of the Yakutian diamond-bearing province, Russia. Hydrogeology Journal. 2003, vol. 11, no. 5, pp. 574—581. DOI: 10.1007/s10040-003-0270-8.

11. Yannikov A. M., Yannikova S. A., Ovchinnikova M. Yu., Korepanov A. Yu. The use of permafrost for injection of drainage waters of primary diamond deposits on the example of the Noyabrsky site. Bulletin of Perm University. Geology. 2021, no. 3, pp. 284—299. [In Russ]. DOI: 10.17072/psu.geol.20.3.284.

12. Drozdov A. V., Melnikov A. I. Rupture dislocation role in diamond mine water encroachment in Yakutia. Izvestiya Sibirskogo otdeleniya RAEN. Geologiya, poiski i razvedka rudnykh mestorozhdeniy. 2014, no. 2, pp. 71—81. [In Russ].

13. Pham H. T., Rühaak W., Schuster V., Sass I. Fully hydro-mechanical coupled Plugin (SUB+) in FEFLOW for analysis of land subsidence due to groundwater extraction. SoftwareX. 2019, vol. 9, pp. 15—19.

14. Jafari T., Kiem A. S., Javadi S., Nakamura T., Nishida K. Fully integrated numerical simulation of surface water-groundwater interactions using SWAT-MODFLOW with an improved calibration tool. Journal of Hydrology: Regional Studies. 2021, vol. 35, article 100822. DOI: 10.1016/j.ejrh.2021.100822.

15. Nagare R. M., Mohammed A. A., Park Y. J., Schincariol R. A. Modeling shallow ground temperatures around hot buried pipelines in cold regions. Cold Regions Science and Technology. 2021, vol. 187, article 103295.

16. Bidwell V. J. Realistic forecasting of groundwater level, based on the eigenstructure of aquifer dynamics. Mathematics and Computers in Simulation. 2005, vol. 69, pp. 12—20. DOI: 10.1016/j.matcom.2005.02.023.

17. Han L., Menzel L. Hydrological variability in southern Siberia and the role of permafrost degradation. Journal of Hydrology. 2022, vol. 604, article 127203. DOI: 10.1016/j.jhydrol. 2021.127203.

18. Kurylyk B. L., MacQuarrie K. T. B., McKenzie J. M. Climate change impacts on groundwater and soil temperatures in cold and temperate regions: Implications, mathematical theory, and emerging simulation tools. Earth-Science Reviews. 2014, vol. 138, pp. 313—334. DOI: 1010.1016/j.earscirev.2014.06.006.

19. Yurkevich N., Fadeeva I., Bortnikova S., Shevko E., Yannikov A. Modeling the process of thawing of tailings dam base soils by technological waters. Applied Sciences (Switzerland). 2021, vol. 11, no. 23, article 11089. DOI: 10.3390/app112311089.

20. Shepelev V. V. Nadmerzlotnye vody kriolitozony [Permafrost waters of the cryolithozone], Novosibirsk, Akademicheskoe izdatel'stvo «Geo», 2011, 169 p

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.