Hazard and vulnerability criteria in the rank structure of aerological risks in coal mines

Based on the risk-oriented approach, the methodology for assessing the aerological risks by ranks embracing the whole mine and its separate parts is constructed. The hazard and vulnerability criteria are defined and ranked in the structure of aerological risks. The key criteria of geological hazards are: methane content of coal seams, relative methane content of mine air, dust producibility of coal seams, content of heavy hydrocarbons in residue gases in coal seams and geothermal stage in coal deposits. The key criteria of ventilation vulnerability are depression in mine and in main drifts, air reserve of a main fan, ventilation stability and joint operation stability of main fans, hazard attenuation rate per sources, influence of fresh and return air flow direction on air leakage, influence of gas intermix activity in face zone, influence of gas kick zone on ventilation of a gateway, etc. The described methodology enables prediction and reduction of aerological risks at the stages of coal mine planning and design, operation, closure and abandonment.

Keywords: coal mine, aerological safety methodology, risk hierarchy, aerological risk ranks, methane, coal dust, hazard criteria, ventilation circuit vulnerability.
For citation:

Balovtsev S. V., Skopintseva O. V. Hazard and vulnerability criteria in the rank structure of aerological risks in coal mines. MIAB. Mining Inf. Anal. Bull. 2022;(10):153-165. [In Russ]. DOI: 10.25018/0236_1493_2022_10_0_153.

Acknowledgements:
Issue number: 10
Year: 2022
Page number: 153-165
ISBN: 0236-1493
UDK: 622.4:622.8
DOI: 10.25018/0236_1493_2022_10_0_153
Article receipt date: 02.07.2022
Date of review receipt: 30.08.2022
Date of the editorial board′s decision on the article′s publishing: 10.09.2022
About authors:

S.V. Balovtsev1, Cand. Sci. (Eng.), Assistant Professor, e-mail: balovcev@yandex.ru, ORCID ID: 0000-0002-0961-6050
O.V. Skopintseva1, Dr. Sci. (Eng.), Professor, e-mail: skopintseva54@mail.ru, ORCID ID: 0000-0002-7257-8720,
1 National University of Science and Technology «MISiS», 119049, Moscow, Russia.

 

For contacts:

S.V. Balovtsev, e-mail: balovcev@yandex.ru.

Bibliography:

1. Arhipov I. A., Filin A. E. Accident rate analysis in coal mines in Russia. MIAB. Mining Inf. Anal. Bull. 2019, no. 1, pp. 208—215. [In Russ]. DOI: 10.25018/0236-1493-2019-01-0208-215.

2. Kabanov E. I., Korshunov G. I., Kornev A. V., Myakov V. V. Analysis of the causes of methane explosions, flashes and ignitions at coal mines of Russia in 2005-2019. MIAB. Mining Inf. Anal. Bull. 2021, no. 2-1, pp. 18—29. [In Russ]. DOI: 10.25018/0236-1493-2021-21-0-18-29.

3. Smirnyakov V. V., Smirnyakova V. V., Pekarchuk D. S., Orlov F. A. Analysis of methane and dust explosions in modern coal mines in Russia. International Journal of Civil Engineering and Technology. 2019, vol. 10, no. 2, pp. 1917—1929.

4. Rodionov V., Tumanov M., Skripnik I., Kaverzneva T., Pshenichnaya C. Analysis of the fractional composition of coal dust and its effect on the explosion hazard of the air in coal mines. IOP Conference Series: Earth and Environmental Science. 2022, vol. 981, no. 3, article 032024. DOI: 10.1088/1755-1315/981/3/032024.

5. Kabanov E. I., Korshunov G. I., Magomet R. D. Quantitative risk assessment of miners injury during explosions of methane-dust-air mixtures in underground workings. Journal of Applied Science and Engineering. 2020, vol. 24, no. 1, pp. 105—110. DOI: 10.6180/jase. 202102_24(1).0014.

6. Slastunov S., Kolikov K., Batugin A., Sadov A., Khautiev A. Improvement of intensive inseam gas drainage technology at Kirova Mine in Kuznetsk Coal Basin. Energies. 2022, vol. 15, no. 3, article 1047. DOI: 10.3390/en15031047.

7. Slastunov S. V., Yutyaev E. P., Mazanik E. V., Sadov A. P., Ponizov A. V. Ensuring methne safety of mines on the basis of deep degassing of coal seams in their preparation for intensive development. Ugol'. 2019, no. 7, pp. 42—47. [In Russ]. DOI: 10.18796/0041-5790-2019-7-42-47.

8. Kubrin S. S., Reshetnyak S. N., Zakorshmenny I. M., Karpenko S. M. Simulation modeling of equipment operating modes of complex mechanized coal mine face. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 2, pp. 286–294. [In Russ]. DOI: 10.21177/1998-45022022-14-2-286-294.

9. Kopylov K. N., Kubrin S. S., Zakorshmenniy I. M., Reshetniak S. N. Reserves of increase of efficiency of coal extraction sections of coal mines. Ugol'. 2019, no. 3, pp. 46—49. [In Russ]. DOI: 10.18796/0041-5790-2019-3-46-49.

10. Kulikova E. Yu. Methods of forming an integral risk assessment in mine and underground construction. MIAB. Mining Inf. Anal. Bull. 2021, no. 2-1, pp. 124—133. [In Russ]. DOI: 10.25018/0236-1493-2021-21-0-124-133.

11. Kulikova E. Yu., Vinogradova O. V. Risks as a cause of industrial safety inhibition in underground construction. MIAB. Mining Inf. Anal. Bull. 2020, no. 7, pp. 146—154. [In Russ]. DOI: 10.25018/0236-1493-2020-7-0-146-154.

12. Batugin A. A proposed classification of the earth’s crustal areas by the level of geodynamic threat. Geodesy and Geodynamics. 2021, vol. 12, no. 1, pp. 21—30. DOI: 10.1016/j. geog.2020.10.002.

13. Trinh L. H., Nguyen V. N. Mapping coal fires using normalized difference coal fire index (NDCFI): case study at Khanh Hoa coal mine, Vietnam. Mining Science and Technology (Russia). 2021, vol. 6, no. 4, pp. 233–240. DOI: 10.17073/2500-0632-2021-4-233-240.

14. Smirniakov V. V., Smirniakova V. V. Formation peculiarities of caving zones as aerodynamic active branches of mine ventilation systems in pillar mining of coal beds. Journal of Industrial Pollution Control. 2017, vol. 33, no. 1, pp. 864—872.

15. Nguyen Q. L., Nguyen Q. M., Tran D. T., Bui X. N. Prediction of ground subsidence due to underground mining through time using multilayer feed-forward artificial neural networks and back-propagation algorithm — case study at Mong Duong underground coal mine (Vietnam). Mining Science and Technology (Russia). 2021, vol. 6, no. 4, pp. 241–251. DOI: 10.17073/2500-0632-2021-4-241-251.

16. Baymukhametov S. K., Imashev A. Zh., Mullagaliev F. A., Mullagalieva L. F., Kolikov K. S. Low-permeable gas-bearing and outburst-hazardous coal seam mining in the Karaganda Coal Basin. MIAB. Mining Inf. Anal. Bull. 2021, no. 10-1, pp. 124—136. [In Russ]. DOI: 10.25018/0236_1493_2021_101_0_124.

17. Soloviov V. B., Magomet R. D. The ways of safety improvement during the outburstprone and gas-bearing coal seams development. Journal of Industrial Pollution Control. 2017, vol. 33, no. 1, pp. 1042—1047.

18. Lolon S. A., Brune J. F., Bogin G. E., Juganda A. Study of methane outgassing and mitigation in longwall coal mines. Mining, Metallurgy and Exploration. 2020, vol. 37, no. 5, pp. 1437—1449. DOI: 10.1007/s42461-020-00287-6.

19. Bosikov I. I., Klyuev R. V., Aimbetova I. O., Makhosheva S. A. Assessment and analysis of aerodynamic parameters of air flows for effective selection of air supply schemes in coal mines. Sustainable Development of Mountain Territories. 2021, vol. 13, no. 3, pp. 397—405. [In Russ]. DOI: 10.21177/1998-4502-2021-13-3-397-405.

20. Yi H., Park J., Kim M. S. Characteristics of mine ventilation air flow using both blowing and exhaust ducts at the mining face. Journal of Mechanical Science and Technology. 2020, vol. 34, pp. 1167—1174. DOI: 10.1007/s12206-020-0218-0.

21. Kornev A. V., Korshunov G. I., Kudelas D. Reduction of dust in the longwall faces of coal mines: Problems and perspective solutions. Acta Montanistica Slovaca. 2021, vol. 26, no. 1, pp. 84—97. DOI: 10.46544/AMS.v26i1.07.

22. Zaburdayev V. S. Methane abundance of high-performance mining areas. Occupational Safety in Industry. 2019, no. 6, pp. 65—69. [In Russ]. DOI: 10.24000/0409-2961-2019-665-69.

23. Bosikov I. I., Klyuev R. V., Mayer A. V., Stas G. V. Development of a method for analyzing and evaluating the optimal state of aerogasodynamic processes in coal mines. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 1, pp. 97–106. [In Russ]. DOI: 10.21177/1998-4502-2022-14-1-97-106.

24. Li Y., Su H., Ji H., Cheng W. Numerical simulation to determine the gas explosion risk in longwall goaf areas. A case study of Xutuan Colliery. International Journal of Mining Science and Technology. 2020, vol. 30, no. 6, pp. 875—882. DOI: 10.1016/j.ijmst.2020.07.007.

25. Cheng L., Guo H., Lin H. Evolutionary model of coal mine safety system based on multiagent modeling. Process Safety and Environmental Protection. 2021, vol. 147, pp. 1193—1200. DOI: 10.1016/j.psep.2021.01.046.

26. Romanchenko S. B., Naganovskiy Y. K., Kornev A. V. Innovative ways to control dust and explosion safety of mine workings. Journal of Mining Institute. 2021, vol. 252, pp. 927— 936. [In Russ]. DOI: 10.31897/PMI.2021.6.14.

27. Dmitrievich M. R., Alekseevich R. V., Borisovich S. V. Methodological approach to issue of researching dust-explosion protection of mine workings of coal mines. International Journal of Civil Engineering and Technology. 2019, vol. 10, no. 2, pp. 1154—1161.

28. Lebedev V. S., Skopintseva O. V. Residual coalbed gas components: Composition, content, hazard. Gornyi Zhurnal. 2017, no. 4, pp. 84—86. [In Russ]. DOI: 10. 17580/gzh.2017.04.17.

29. Zinovieva O. M., Kuznetsov D. S., Merkulova A. M., Smirnova N. A. Digitalization of industrial safety management systems in mining. MIAB. Mining Inf. Anal. Bull. 2021, no. 2-1, pp. 113—123. [In Russ]. DOI: 10.25018/0236-1493-2021-21-0-113-123.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.