Rock failure criteria

Authors: Zhabko A. V.

Based on the found regular patterns of plastic deformation and failure of rocks, an analytical plasticity and strength criterion is proposed, compared with the known failure criteria by Coulomb and Hoek–Brown, comprehensively analyzed and verified. A classification of rocks by features of plastic deformation is presented. Benefits and disbenefits of the existing rock failure criteria are considered. A novel view on the mechanisms of plastic deformation of rocks in the phase of strengthening is put forward and discussed. It is highlighted that plastic deformation is translational-and-rotational nearby planes of shear, and the result of such behavior is higher strength of rocks (strengthening) and dilatancy. That is, micro-cracks which appear at the stage of deformation-induced strengthening keep off turning into fullfledged sliding surfaces intersecting the whole sample when the stress deviator is raised. This is connected with the stress redistribution at the crack tips (growth of the normal stresses), caused by the turn of the plane of shear and by the elastic reaction pressure of side rocks, which, in its turn, leads to the closure of the crack mouths, and the crack cannot grow further. The article presents quantitative relations to find force factors which initiate dilatancy and turn of components in the medium, i.e. spotlight is on dynamics of the plastic deformation process. The authors come to a conclusion that the major drawback of the Coulomb criterion is low precision of failure prediction while the advantage is easy usability. Alternatively, the Hoek–Brown failure criterion offers a sufficiently accurate prediction of a failure envelope but, being empirical at bottom, provides no explanation of the physics or mechanics of plastic deformation. In this context, the proposed criterion is preferable as it determines the limit strength, limit elasticity and the plastic potential, as well as allows evaluating the process of plastic deformation in rocks.

Keywords: plasticity and strength criterion, dilatancy, plastic deformation, deformationinduced strengthening, shear fracture, crack, principal stresses.
For citation:

Zhabko A. V. Rock failure criteria. MIAB. Mining Inf. Anal. Bull. 2021;(11-1):27—45. [In Russ]. DOI: 10.25018/0236_1493_2021_111_0_27.

Acknowledgements:
Issue number: 11
Year: 2021
Page number: 24-45
ISBN: 0236-1493
UDK: 539.(4+4.011+42)+622.(011.4+02+023.23)
DOI: 10.25018/0236_1493_2021_111_0_27
Article receipt date: 01.06.2021
Date of review receipt: 17.06.2021
Date of the editorial board′s decision on the article′s publishing: 10.10.2021
About authors:

Zhabko A. V., Dr. Sci. (Eng.), Associate Professor, Head of the Mine Surveying Department, zhabkoav@mail.ru, Ural State Mining University, ul. Kuibysheva 30, Yekaterinburg, 620144 Russia.

For contacts:
Bibliography:

1. Coulumb C. Application des regles de maximis et minimis a quelques problemes de staticue relatifs a l’architecture. Memoires de savants entranges de l’Academie des scieces. P., 1773.

2. Marinos V. A. Revised geotechnical classification GSI system for tectonically disturbed rock masses, such as flysch. Bulletin of Engineering Geology and the Environment 2017; № 19: pp 1—14.

3. Bewick R. P., Kaiser P. K., Amann F. Strength of massive to moderately jointed hard rock masses. Journal of Rock Mechanics and Geotechnical Engineering, 2019; №11(3): pp 562—575.

4. Marinos V, Carter T. G. Maintaining geological reality in application of GSI for design of engineering structures in rock. Journal of Engineering Geology, 2018; 239: 282—297.

5. Hoek E., Carter T. & Diederichs M. Quantification of the GSI Chart. Geomechanics Symposium held in San Francisco, USA, 2013.

6. Hoek E., Martin C. D. / Journal of Rock Mechanics and Geotechnical Engineering № 6 (2014): pp 287—300.

7. E. Hoek, E. T. Brown / Journal of Rock Mechanics and Geotechnical Engineering №XXX (2018): pp 1—19.

8. Zhabko A. V. Teoreticheskiye i eksperimental’nye aspekty plasticheskogo deformirovaniya i razrusheniya gornykh porod [Theoretical and experimental aspects of plastic deformation and destruction of rocks]. Izvestia UGGU [Bulletin of the Ural State Mining University],2018, no. 1 (49), pp. 68–79. [In Russ]

9. Zhabko A. V. Kontinual’naya kontseptsiya sdvigovoy dezintegratsii tverdykh tel [Continual concept of shear disintegration of solids]. Izvestia UGGU [Bulletin of the Ural State Mining University], 2019, no. 3 (55), pp. 111—123. [In Russ]

10. Zhabko A. V. Kriteriy prochnosti blochnykh sred i obratnye geomekhanicheskiye raschety [Strengh criterion of block media and reverse geomechanical calculations]. Izvestiya vysshikh uchebnykh zavedeniy. Gornyj zhurnal [Bulletin of higher educational institutions. Mining Journal], 2020, no. 6, pp. 37—47. [In Russ]

11. Makarov P. V. Samoorganizovannaya kritichnost’ deformacionnyлh processov i perspektivy prognoza razrusheniya [Self-organized criticality of deformation processes and prospects of fracture prediction]. Fizicheskaya mezomekhanika [Physical Mesomechanics], 2010, no. 13 (5), pp. 97—112. [In Russ]

12. Panin V. E., Egorushkin V. E. Osnovy fizicheskoy mezomekhaniki plasticheskoy deformatsii i razrusheniya tverdykh tel kak nelineynykh ierarkhicheski organizovannykh sistem [Fundamentals of physical mesomechanics of plastic deformation and fracture of solids as nonlinear hierarchically organized systems]. Fizicheskaya mezomekhanika [Physical Mesomechanics], 2015, no. 18 (5), pp. 100—113. [In Russ]

13. Vikulin A. V., Makhmudov A. G. Ivanchin et al. O volnovykh i reidnykh svoystvakh zemnoy kory [On wave and reid properties of the earth’s crust]. Fizika tverdogo tela [Solid State Physics],2016, vol. 58, issue. 3, pp. 547—557. [In Russ]

14. Garagash I. A. Uedinyonnyye tektonicheskiye volny v verkhney mantii [Solitary tectonic waves in the upper mantle]. Tektonofizika i aktual’nyye voprosy nauk o Zemle. Chetvertaya tektonofizicheskaya konferentsiya IFZ RAN [Tectonophysics and topical issues of earth sciences. The fourth tectonophysical conference of the IPE RAS], 2016, pp. 456—460. [In Russ]

15. Bykov V. G. Nelinejnye volny i solitony v modelyakh razlomno-blokovykh geologicheskikh sred [Nonlinear waves and solitons in the models of fault-block geological media]. Geologiya i geofizika [Geology and Geophysics], 2015, vol. 56, no. 5, pp. 1008—1024. [In Russ]

16. Tarasov B. G. Veernyi mekhanizm kak initsiator zemletryaseniy i gornykh udarov na glubokikh gorizontakh [Fan mechanism as an initiator of earthquakes and rock bumps on deep horizons]. Gornyy zhurnal [Mining Journal], 2020, no. 3 (2272), pp. 18 — 23. [In Russ]

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.