Laboratory installation for collection and concentration of airborne coal dust

Coal dusting is one of the urgent problems of the coal industry, since coal dust can pollute the air, soils and water objects. In accordance with SanPiN 1.2.3685-21, coal dust is included in the list of air pollutants. It was noted that there are no marker substances for soils and water objects, indicating that coal dust is the source of their pollution. The availability of information on the content of airborne dust in coals, its granulometric composition and the concentration of potentially hazardous elements will make it possible to identify a list of marker substances, i.e. potential pollutants of soils and water objects. This article describes a new laboratory installation designed to capture and concentrate fine dust contained in ordinary coals or commercial products that is capable of being in an airborne state. Experimental results studies on a laboratory installation for trapping suspended coal dust from commercial coals are presented. The quantitative content of airborne dust in coals of different rank was determined, granulometric composition of dust samples was analyzed. It has been established that, in comparison with the original coals, dust is characterized by a higher ash contents, and the sulfur content in it changes insignificantly.

Keywords: laboratory installation, airborne coal dust, concentration, identification, potentially hazardous elements, sieve analysis, regulation, environmental damage.
For citation:

Krasilova V. A., Kossovich E. L., Gavrilova D. I., Kozyrev M. M. Laboratory installation for collection and concentration of airborne coal dust. MIAB. Mining Inf. Anal. Bull. 2022;(6):121-130. [In Russ]. DOI: 10.25018/0236_1493_2022_6_0_121.

Acknowledgements:

The work was supported by the Russian Science Foundation, Grant No 18-77-10052.

Issue number: 6
Year: 2022
Page number: 121-130
ISBN: 0236-1493
UDK: 628.511.123+552.57+504.064
DOI: 10.25018/0236_1493_2022_6_0_121
Article receipt date: 08.04.2022
Date of review receipt: 20.04.2022
Date of the editorial board′s decision on the article′s publishing: 10.05.2022
About authors:

V.A. Krasilova1, Graduate Student, Engineer, e-mail: vera.prosina2017@yandex.ru,
E.L. Kossovich1, Cand. Sci. (Phys. Mathem.), Senior Researcher, e-mail: e.kossovich@misis.ru,
D.I. Gavrilova1, Cand. Sci. (Eng.), Junior Researcher, e-mail: gavrilova4049@mail.ru,
M.M. Kozyrev1, Student, Laboratory Assistant, e-mail: cozyrev.misha@yandex.ru,
1 Scientific-Educational Testing Laboratory of Physics and Chemistry of Coals, Mining Institute, National University of Science and Technology «MISiS», 119049, Moscow, Russia.

 

For contacts:

V.A. Krasilova, e-mail: vera.prosina2017@yandex.ru.

Bibliography:

1. Zhuravleva N. V., Khabibulina E. R., Zhuravleva E. V., Mikhaylova E. S., Ismagilov Z. R. Carbon-containing dust concentrations control in the atmospheric air during coal mining and processing. Bulletin of the Kuzbass State Technical University. 2020, no. 3, pp. 33–44. [In Russ]. DOI: 10.26730/1999-4125-2020-3-33-44.

2. Kirichenko K. Yu., Kholodov A. S., Vakhniuk I. A., Gusev D. S., Kiryanov A. V., Drozd V. A., Golokhvast K. S. Research of air pollution with fine coal dust (Nakhodka, Primorsky krai). Bulletin of Kamchatka State Technical University. 2019, no. 50, pp. 6–12. [In Russ]. DOI: 10.17217/2079-0333-2019-50-6-13.

3. Erol I., Aydin H., Didari V., Ural S. Pneumoconiosis and quartz content of respirable dusts in the coal mines in Zonguldak, Turkey. International Journal of Coal Geology. 2013, vol. 116– 117, pp. 26–35. DOI: 10.1016/j.coal.2013.05.008.

4. Page S. J., Organiscak J. A. Suggestion of a cause-and-effect relationship among coal rank, airborne dust, and incidence of workers’ pneumoconiosis. Aihaj. 2000, vol. 61, no. 6, pp. 785–787.

5. Liu T., Liu S. The impacts of coal dust on miners’ health. A review. Environmental Research. 2020, vol. 190, no. 3-4, article 109849. DOI: 10.1016/j.envres.2020.109849.

6. Dai S., Ren D., Chou C. L., Finkelman R. B., Seredin V. V., Zhou Y. Geochemistry of trace elements in Chinese coals. A review of abundances, genetic types, impacts on human health, and industrial utilization. International Journal of Coal Geology. 2012, vol. 94, pp. 3–21. DOI: 10.1016/j.coal.2011.02.003.

7. Rout T. K., Masto R. E., Ram L. C., George J., Padhy P. K. Assessment of human health risks from heavy metals in outdoor dust samples in a coal mining area. Environmental Geochemistry and Health. 2013, vol. 35, no. 3, pp. 347–356. DOI: 10.1007/s10653-012-9499-2.

8. Rout T. K., Masto R. E., Padhy P. K., George J., Ram L. C., Maity S. Dust fall and elemental flux in a coal mining area. Journal of Geochemical Exploration. 2014, vol. 144, Part C, pp. 443–455. DOI:10.1016/j.gexplo.2014.04.003.

9. Kara-Sal I. D. Heavy metal content in the snow cover of the city of Kyzyl. Bulletin of Tuva State University. 2009, no. 3, pp. 36–39. [In Russ].

10. Masto R. E., Ram L. C., George J., Selvi V. A., Sinha A. K., Verma S. K., Rout T. K., Priyadarshini P. P. Impacts of opencast coal mine and mine fire on the trace elements’ content of the surrounding soil vis-à-vis human health risk. Toxicological and Environmental Chemistry. 2011, vol. 93, no. 2, pp. 223–237. DOI: 10.1080/02772248.2010.510922.

11. Galhardi J. A., García-Tenorio R., Díaz Francés I., Bonotto D. M., Marcelli M. P. Natural radionuclides in lichens, mosses and ferns in a thermal power plant and in an adjacent coal mine

area in southern Brazil. Journal of Environmental Radioactivity. 2017, vol. 16, pp. 43–53. DOI: 10.1016/j.jenvrad.2016.11.009.

12. Bhuiyan M. A. H., Parvez L., Islam M. A., Dampare S. B., Suzuki S. Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Journal of Hazardous Materials. 2010, vol. 173, no. 1–3. pp. 384–392. DOI: 10.1016/j.jhazmat.2009.08.085.

13. Zhou X., Bi X., Li X., Li S., Chen J., He T., Li Z. Fate of cadmium in coal-fired power plants in Guizhou, Southwest China: With emphasis on updated atmospheric emissions. Atmospheric Pollution Research. 2020. vol. 11, no. 5, pp. 920–927. DOI: 10.1016/j.apr.2020.02.004.

14. Zhuravleva N. V. Methods of assessing the impact of extraction and processing of coal of the Kuznetsk coal basinon the ecological state of the environment. Industrial Safety. 2016, no. 4, pp. 102–112. [In Russ].

15. Epshtein S. A., Kossovich E. L., Vishnevskaya E. P., Agarkov K. V., Koliukh A. V. Determination of total and fine airborne dust in coals. MIAB. Mining Inf. Anal. Bull. 2020, no. 6, pp. 5–14. [In Russ]. DOI: 10.25018/02361493-2020-6-0-5-14.

16. Krasilova V. A., Epshtein S. A., Kossovich E. L., Kozyrev M. M., Ionin A. A. Development of method for coal dust particle size distribution characterization by laser diffraction. MIAB. Mining Inf. Anal. Bull. 2022, no. 2, pp. 5–16. [In Russ]. DOI: 10.25018/0236_1493_2022_2_0_5.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.