Raman lidar for detection of leaks from tank and engines of hydrogen-fueled mining transportation

The mining industry uses equipment that consumes large amounts of energy. In mining operations, diesel equipment is widely used due to its flexibility, load capacity and adaptability to various operating conditions. However, when using diesel mining equipment, there is a high consumption of diesel fuel and high levels of greenhouse gas emissions, mainly carbon monoxide. Using hydrogen as a fuel not only offers the opportunity to decarbonize transportation and the mining industry, but also significantly reduces local air pollution. The use of hydrogen as a fuel to drive engines of power plants and transport facilities in the mining industry requires the development of equipment to control the leakage of hydrogen from storage elements and fuel supply to the engines. The solution to the problem of monitoring hydrogen leaks from fuel tanks of mining vehicles and power equipment that ensures the operation of mining enterprises using Raman lidar (RSL) is considered. The graphical dependences of the time of measurement of hydrogen concentration as a function of the distance to the place of hydrogen leak are presented. By calculating the lidar equation, it was established that the minimum time for measuring the hydrogen concentration in the air with the Raman lidar will be at a wavelength of 532 nm.

Keywords: mining, ecology, transport, power plant engines, decarbonization, fuel, hydrogen, leak control, laser.
For citation:

Privalov V. E., Turkin V. A., Shemanin V. G. Raman lidar for detection of leaks from tank and engines of hydrogen-fueled mining transportation. MIAB. Mining Inf. Anal. Bull. 2024;(7-1):116-125. [In Russ]. DOI: 10.25018/0236_1493_2024_71_0_116.

Acknowledgements:
Issue number: 7
Year: 2024
Page number: 116-125
ISBN: 0236-1493
UDK: 622.6:662.769.21:535.14
DOI: 10.25018/0236_1493_2024_71_0_116
Article receipt date: 01.03.2024
Date of review receipt: 06.05.2024
Date of the editorial board′s decision on the article′s publishing: 10.06.2024
About authors:

V.E. Privalov, Dr. Sci. (Phys. Mathem.), Professor, Peter the Great St. Petersburg Polytechnic University, 195251, Saint-Petersburg, Russia, e-mail: vaevpriv@yandex.ru, ORCID ID: 0000-0003-2904-7382, 
V.A. Turkin, Dr. Sci. (Eng.), Professor, Admiral Ushakov Maritime State University, 353924, Novorossiysk, Russia, e-mail: turvla@mail.ru, ORCID ID: 0000-0003-2945-6143, 
V.G. Shemanin, Dr. Sci. (Phys. Mathem.), Professor, Novorossiysk Polytechnic Institute (branch) of Kuban State Technological University, 353900, Novorossiysk, Russia, e-mail: vshemanin@mail.ru, ORCID ID: 0000-0003-0707-489X.

 

For contacts:

V.A. Turkin, e-mail: turvla@mail.ru.

Bibliography:

1. Figueiredo R. L., da Silva J. M., Ortiz C. E. A. Green hydrogen: Decarbonization in mining — Review. Cleaner Energy Systems. 2023, vol. 5, article 100075. DOI: 10.1016/j.cles.2023.100075.

2. Modina M. A., Khekert Е. V., Epikhin A. I. Bioindication and biomonitoring assessment of the state of atmospheric air and soil in the study area. IOP Conference Series: Earth and Environmental Science. 2021, vol. 867, no. 1, article 012072. DOI: 10.1088/1755-1315/867/1/012072

3. Modina M. A., Kheckert E. V., Epikhin A. I. Ways to reduce harmful emissions from the operation of power plants in special environmental control areas. IOP Conference Series: Earth and Environmental Science. 2021, vol. 867, no. 1, article 012104. DOI: 10.1088/1755-1315/867/1/012104.

4. Balovtsev S. V., Skopintseva O. V., Kulikova E. Yu. Hierarchical structure of aerological risks in coal mines. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 2, pp. 276—285. [In Russ]. DOI: 10.21177/1998-4502-2022-14-2-276-285.

5. Kulikova А. А. A new approach to estimating emissions from mining enterprises, taking into account the carbon footprint. Sustainable Development of Mountain Territories. 2023, vol. 15, no. 4, pp. 825—832. [In Russ]. DOI: 10.21177/1998-4502-2023-15-4-825-832.

6. Shahabuddin M., Brooks G., Rhamdhani M. A. Decarbonisation and hydrogen integration of steel industries: recent development, challenges and technoeconomic analysis. Journal of Cleaner Production. 2023, vol. 395, no. 1, article 136391. DOI: 10.1016/j.jclepro.2023.136391.

7. Ahmad Z., Kaario O., Karimkashi S., Qiang C., Vuorinen V., Larmi M. Effects of ethane addition on diesel-methane dual-fuel combustion in a heavy-duty engine. Fuel. 2021, vol. 289, article 119834. DOI: 10.1016/j.fuel.2020.119834.

8. Ehrhart B. D., Brooks D. M., Muna A. B., LaFleur C. B. Risk assessment of hydrogen fuel cell electric vehicles in tunnels. Fire Technology. 2020, vol. 56, pp. 891—912. DOI: 10.1007/s10694-01900910-z.

9. Gridina E., Kovshov S., Borovikov D. Hazard mapping as a fundamental element of osh management systems currently used in the mining sector. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2022, vol. 1, pp. 107—115. DOI: 10.33271/nvngu/2022-1/107.

10. Malozyomov B. V., Martyushev N. V., Kukartsev V. V., Tynchenko V. S., Bukhtoyarov V. V., Wu X., Tyncheko Y. A., Kukartsev V. A. Overview of methods for enhanced oil recovery from conventional and unconventional reservoirs. Energies. 2023, vol. 16, no. 13, article 4907. DOI: 10.3390/ en16134907.

11. Privalov V. E., Turkin V. А., Shemanin V. G. About laser-information technologies in hydrogen energy. Lasers. Measurements. Information. 2021, no. 1-2, pp. 4—11. [In Russ].

12. Khazin M. L., Apakashev R. A. Hydrogen-powered mining trucks. MIAB. Mining Inf. Anal. Bull. 2022, no. 1, pp. 47—59. [In Russ]. DOI: 10.25018/0236_1493_2022_1_0_47.

13. Gridina E. B., Borovikov D. O. Identification of the causes of injuries based on occupational risk assessment maps at the open-pit coal. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-1, pp. 114—128. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_114.

14. Meyer S. A. Controlled process for the production of thermal energy from gases and apparatus useful therefore. US Patent No. 4826581, 1989.

15. Privalov V. E. Water decomposition device. Lazernye informatsionnye tekhnologii. Trudy XXVI Mezhdunarodnoy konferentsii [Proceedings of the XXVI Conference Laser Information Technologies], Novorossiysk, 2018, pp. 40—41. [In Russ].

16. Mezheris R. Lazernoe distantsionnoe zondirovanie [Laser remote sensing], Moscow, Mir, 1987, 550 p.

17. Gibson A. J., Sanford M. C. W. Daytime measurement of the atmospheric sodium layer. Nature. 1972, vol. 239-2, pp. 509—511.

18. Privalov V. E., Shemanin V. G. Hydrogen and iodine molecules lidar monitoring in atmosphere. Proceedings of SPIE. 2000, vol. 4064, pp. 2—11.

19. Voronina E. I., Privalov V. E., Shemanin V. G. The iodine molecules in the near-earth atmospheric layer fluorescence lidar sensing from space orbit. Optical Memory and Neural Networks. 2009, vol. 18-3, pp. 212—217.

20. Rovnik N. A., Lushpeev V. A., Tananykhin D. S., Shpurov I. V. Rational gas inflow restriction technologies during the development of oil rims. Topical Issues of Rational Use of Natural Resources. 2019, vol. 2020, pp. 888—900. DOI: 10.1201/9781003014638-54.

21. Gridina E. B., Borovikov D. O. Improving the safety of the working personnel of a quarry located in difficult mining and geological conditions of the Far North. MIAB. Mining Inf. Anal. Bull. 2023, no. 9-1, pp. 149—163. [In Russ]. DOI: 10.25018/0236_1493_2023_91_0_149.

22. IEA. The future of hydrogen. International Energy Agency. Paris, 2019.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.