Mathematical model of load prediction on horizontal mine tunnel support

This paper focuses on determination of rock mass volume that exerts pressure on roof support in horizontal mine tunnels with regard to the internal friction coefficient as well as the shear and tear resistance (cohesion). The authors propose a new mathematical model to find the most probable shape of the failure surface in rock mass above a horizontal mine tunnel in case of the uniform physical and mechanical properties of rock mass in neighborhood of the mine tunnel. At the present time, the load on horizontal mine tunnel support is estimated using approximate mathematical models built in the first half of the previous century, with many various assumptions and simplifications, and updated with the data on geological conditions and heading technologies in a certain underground opening. The adopted mathematical description of arch formation in rock mass above a mine tunnel leads to the unfounded acceptance of an estimated load in determination of a load-bearing capacity of mine support and, consequently, to an invalid strength design of the support. This study aims to develop a mathematical model for the stress–strain behavior of rock mass above a horizontal mine tunnel, with regard to the physical and mechanical parameters of rocks and geometrical parameters of the mine tunnel, to find the most probable load applied to the mine tunnel support. The obtained analytical relations enable more accurate assessment of the shape of the failure surface in rock mass above a horizontal mine tunnel as against the current procedures, given that the physical and mechanical properties of rock mass above the tunnel are uniform.

Keywords: horizontal mine tunnel, support loading, internal friction coefficient, cohesion, load-bearing capacity of support, failure surface shape, rock mass, natural arch.
For citation:

Evstratov V. A., Voronova E. Yu., Lugantsev B. B., Isakov V. S., Kholodova L. A. Mathematical model of load prediction on horizontal mine tunnel support. MIAB. Mining Inf. Anal. Bull. 2025;(3):54-63. DOI: 10.25018/0236_1493_2025_3_0_54.

Acknowledgements:
Issue number: 3
Year: 2025
Page number: 54-63
ISBN: 0236-1493
UDK: 622.28:519.87
DOI: 10.25018/0236_1493_2025_3_0_54
Article receipt date: 08.07.2024
Date of review receipt: 05.11.2024
Date of the editorial board′s decision on the article′s publishing: 10.02.2025
About authors:

V.A. Evstratov1, Dr. Sci. (Eng.), Professor, Professor, e-mail: vae602@yandex.ru, ORCID ID: 0000-0001-9531-2557,
E.Yu. Voronova1, Dr. Sci. (Eng.), Assistant Professor, Head of Chair, e-mail: eleonora_sam_ti@mail.ru, ORCID ID: 0000-0002-4721-4570,
B.B. Lugantsev, Dr. Sci. (Eng.), Professor, Full Member of the Academy of Mining Sciences, Chairman of the Board of Directors, Shakhty Scientific Research and Design Coal Institute, 346500, Shakhty, Russia, e-mail: boris4721@mail.ru, ORCID ID: 0000-0002-8296-7922,
V.S. Isakov, Dr. Sci. (Eng.), Professor, Head of Chair, Platov South Russian State Polytechnic University, 346400, Novocherkassk, Russia, e-mail: vs.isakov@mail.ru, ORCID ID: 0000-0003-1859-6589,
L.A. Kholodova1, Senior Lecturer, e-mail: holodova0420@yandex.ru, ORCID ID: 0009-0003-9726-399X,
1 Shakhty Automobile and Road Construction Institute—Branch of the Platov South Russian State Polytechnic University, 346500, Shakhty, Russia.

 

For contacts:

V.A. Evstratov, e-mail: vae602@yandex.ru.

Bibliography:

1. Petrenko V. D., Tyutkin A. L., Petrenko V. I. Review of analytical and experimental methods for studying rock–support interaction. Mosty i tonneli: teoriya, issledovaniya, praktika. 2012, no. 1, pp. 75—81. [In Russ].

2. Reshetnikov A. A. Sovershenstvovanie tekhnologii razrabotki skal'nykh uranovykh rud Strel'tsovskoy gruppy mestorozhdeniy [Improvement of mining technology for hard uranium ores of the Streltsovo deposits], Candidate’s thesis, Chita, 2006, 21 p.

3. Ritter W. Die Static der Tunnel-Gewölbe. Berlin, 1879. p. 347.

4. Protodyakonov M. M. Rock Pressure and Mine Support. Part 2. Rudnichnoe kreplenie [Mine Support], Moscow, Leningrad, Novosibirsk, Gosgorizdat, 1933, 222 p.

5. Zaslavskiy Yu. Z. Issledovanie proyavleniy gornogo davleniya v kapital'nykh vyrabotkakh glubokikh shakht Donbassa [Study of rock pressure-induced phenomena in permanent roadways in deep mines of the Donbas], Moscow, Nedra, 1966. 267 p.

6. Ogorodnikov Y. N., Ochkurov V. I., Maksimov A. B. Calculation of the loads on the arch support of the KMP-A3 excavations in the ore massif of the Yakovlevskoye iron ore deposit. Journal of Mining Institute. 2007, vol. 172, pp. 33—38. [In Russ].

7. Kuranov A. D., Bagautdinov I. I., Kotikov D. A., Zuev B. Yu. Integrated approach to safety pillar stability in slice mining in the Yakovlevo deposit. Gornyi Zhurnal. 2020, no. 1, pp. 115—119. [In Russ]. DOI: 10.17580/gzh.2020.01.23.

8. Dippenaar M. A., Louis van Rooy J., Diamond R. E. Engineering, hydrogeological and vadose zone hydrological aspects of Proterozoic dolomites (South Africa). Journal of African Earth Sciences. 2019, vol. 150, pp. 511—521. DOI: 10.1016/j.jafrearsci.2018.07.024.

9. Zhang S., Jin Q., Hu M., Han Q., Sun J., Cheng F., Zhang X. Differential structure of Ordovician karst zone and hydrocarbon enrichment in paleogeomorphic units in Tahe area, Tarim Basin, NW China. Petroleum Exploration and Development. 2021, vol. 48, no. 5, pp. 1113—1125. DOI: 10.1016/ S1876-3804(21)60095-2.

10. Kozyrev A. A., Zemtsovskiy A. V., Kulkova M. S., Sonnov M. A. Experience of CAE Fidesys application in numerical geomechanical modelling of Zhdanovskoe deposit. Russian Mining Industry Journal. 2021, no. 6, pp. 94—98. [In Russ]. DOI: 10.30686/1609-9192-2021-6-94-98.

11. Korchak P. A., Karasev M. A. Geomechanical justification of brittle fracture zones in rocks in the vicinity of excavation junctions in Apatit’s mines. Sustainable Development of Mountain Territories. 2023, vol. 15, no. 1, pp. 67—80. [In Russ]. DOI: 10.21177/19984502-2023-15-1-67-80.

12. Kashnikov Y. A., Ermashov А. О., Efimov А. А. Geological and geomechanical model of the Verkhnekamsk potash deposit site. Journal of Mining Institute. 2019, vol. 237, pp. 259—267. [In Russ]. DOI: 10.31897/PMI.2019.3.259.

13. Rehman H., Naji A. M., Kim J. J., Yoo H. Extension of tunneling quality index and rock mass rating systems for tunnel support design through back calculations in highly stressed jointed rock mass: An empirical approach based on tunneling data from Himalaya. Tunnelling and Underground Space Technology. 2019, vol. 85, pp. 29—42. DOI: 10.1016/j.tust.2018.11.050.

14. Shaposhnik Yu.N., Neverov S. A., Neverov A. A., Konurin A. I. Rating evaluation of the rock mass of the Veduginsky deposit. Mining sciences: fundamental and applied issues. 2020, vol. 7, no. 1, pp. 202—208. [In Russ]. DOI: 10.15372/FPVGN 2020070131.

15. Jingyuan W., Xianghui D., Weiping C. Numerical analysis on the stability of layered surrounding rock tunnel under the conditions of different inclination angle and thickness. American Journal of Traffic and Transportation Engineering. 2019, vol. 4, no. 2, pp. 67—74. DOI: 10.11648/j.ajtte. 20190402.14.

16. Ngoc Anh Do, Daniel Dias, van Diep Dinh, Tien Tung Tran, van Canh Dao, Dao Viet Doan, Phuc Nhan Nguyen Behavior of noncircular tunnels excavated in stratified rock masses — Case of underground coal mines. Journal of Rock Mechanics and Geotechnical Engineering. 2019, vol. 11, no. 1, pp. 99—110. DOI: 10.1016/j.jrmge.2018.05.005.

17. Zhang J., Kuang M., Zhang Y., Feng T. Evaluation and analysis of the causes of a landslide and treatment measures during the excavation of a tunnel through a soil-rock interface. Engineering Failure Analysis. 2021, vol. 130, article 105784. DOI: 10.1016/j.engfailanal.2021.105784.

18. Fazioa N. L., Perrottia M., Lollinoa P., Pariseb M., Vattanoc M., Madoniac G., Di Maggio C. A three-dimensional back-analysis of the collapse of an underground cavity in soft rocks. Engineering Geology. 2017, vol. 228, pp. 301—311. DOI: 10.1016/j.enggeo.2017.08.014.

19. Protosenya A. G., Alekseev A. V., Verbilo P. E. Prediction of the stress–strain state and stability of the front of tunnel face at the intersection of disturbed zones of the soil mass. Journal of Mining Institute. 2022, vol. 254, pp. 252—260. [In Russ]. DOI: 10.31897/PMI.2022.26.

20. Evstratov V. A., Voronova E. Yu., Linnik Yu. N., Linnik V. Yu., Apachanov A. S., Grigoryev V. I., Suxarnikova V. A. Designing mining machinery screw modules. IOP Conference Series: Materials Science and Engineering. 2021, vol. 1064, no. 1, article 012010. DOI: 10.1088/1757-899X/1064/1/012010.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.