Mathematical modeling of oscillations in novel-type vibration mills

The vibration mill enables vibration of the grinding chamber at any smoothly variable amplitudes and frequencies, which allows the size of the feed an order of magnitude larger than it is common in the industry. The mechanics-based mathematical modeling is built for the oscillatory processes in the vibration mill bin. It is assumed that milling inside the mill is ensured by vertical harmonic oscillations of the bin. The oscillation model is based on the formulation and solution of a boundary problem for the differential equation of the motional energy of the milled material in the bin. A set of the formulas for calculating the height, velocity and time of the coarse material intrusion in the layer of the milled suspension is obtained. Using this set of formulas, the transcendental algebraic equation is constructed to calculate the vertical oscillation frequency of the bin with a view to synchronizing vibrations of particles and grinding chamber. The synchronization enables straight-line collision of the particle and grinding chamber bottom. As a result, the grinding chamber bottom gives extra impulse (momentum) to the particle. This intensifies destruction and milling.

Keywords: vibration mill, vibration synchronization, differential energy equation, frequency equation, transcendental algebraic equation, milling coarse particle (component).
For citation:

Sergeev V. V., Muzaev I. D., Dmitrak Ju. V., Gerasimenko T. E. Mathematical modeling of oscillations in novel-type vibration mills. MIAB. Mining Inf. Anal. Bull. 2021;(8):114128. [In Russ]. DOI: 10.25018/0236_1493_2021_8_0_114.

Issue number: 8
Year: 2021
Page number: 114-128
ISBN: 0236-1493
UDK: 664.734
DOI: 10.25018/0236_1493_2021_8_0_114
Article receipt date: 25.02.2021
Date of review receipt: 29.03.2021
Date of the editorial board′s decision on the article′s publishing: 10.07.2021
About authors:

V.V. Sergeev1, Dr. Sci. (Eng.), Professor,
I.D. Muzaev, Dr. Sci. (Eng.), Professor, Chief Researcher, Geophysical Institute, Vladikavkaz Scientific Center of the Russian Academy of Sciences, 362020, Vladikavkaz, Russia; Professor, Vladikavkaz Branch of the Financial University under the Government of the Russian Federation, Vladikavkaz, Russia,
Ju.V. Dmitrak1, Dr. Sci. (Eng.), Professor, Rector,
T.E. Gerasimenko1, Cand. Sci. (Eng.), Assistant Professor, e-mail:,
1 North Caucasus Mining-and-Metallurgy Institute (State Technological University), 362021, Vladikavkaz, Republic of North Ossetia-Alania, Russia.


For contacts:

T.E. Gerasimenko, e-mail:


1. Bulgakov E. B. Vertikal'naya vibratsionnaya mel'nitsa [Vertical vibrating mill], Candidate’s thesis, Belgorod,Gos. tekhnol. un-t, 2008, 189 p.

2. Mukhamadiev V. Kh. Patent RU 2585842, 10.06.2016. [In Russ].

3. Vaysberg L. A., Safronov A. N. Vibration crushing and grinding equipment for processing raw materials and industrial waste. Research and Production Corporation «Mechanobr-Tekhnika». Ecology and Industry of Russia. 2019, vol. 23, no. 7, pp. 4—9. [In Russ].

4. Baranov V. F. The main producers' crushing and grinding equipment review. Obogashchenie Rud. 2012, no. 3, pp. 32—38. [In Russ].

5. Yang Dasheng, Shi Chunxi Patent CN207013108, 16.02.2018.

6. Xing Wuzhou, Li Dongming, Wei Xiao, Shi Xiaoxiao Patent CN208288192, 28.12.2018.

7. Sergeev V. V., Dmitrak Yu. V., Gerasimenko T. E. Gerasimenko Ya. P. Patent RU 2715638, 02.03.2020. [In Russ].

8. Bardovskiy A. D., Gerasimova A. A., Bibikov P. Ya. Principles of improvement of milling equipment. Gornyi Zhurnal. 2020, no. 3. [In Russ]. DOI: 10.17580/gzh.2020.03.10.

9. Bogdanov V. S., Alexandrova E. B., Bogdanov D. V., Bogdanov N. E., Gavrunov A. Y. Optimization of material grinding in vibration mills. Journal of Physics: Conference Series. 2019, vol. 1353, article 012059. DOI: 10.1088/1742-6596/1353/1/012059.

10. Nikitin N. N. Kurs teoreticheskoy mekhaniki [Theoretical mechanics course], Moscow, Vysshaya shkola, 1990, 607 p.

11. Korn G., Korn T. Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov [Handbook of mathematics for scientists and engineers], Moscow, Nauka, 1977, 330 p.

12. Povkh I. L. Tekhnicheskaya gidromekhanika [Technical hydromechanics], Leningrad, Mashinostroenie, 1959, 524 p.

13. Muzaev I. D., Kharebov K. S., Muzaev N. I. Theoretical principles of design automation of selective water intake devices. Computational Technologies. 2016, no. 4, pp. 99—110. [In Russ].

14. Muzaev I. D., Aguzarov G. V. Mechanical and mathematical modeling of the process of centrifugal oil separation in the internal combustion engine of mining machines. Sustainable Development of Mountain Territories. 2019, vol. 11, no. 23, pp. 352—359. [In Russ].

15. Shterenlikht D. V. Gidravlika [Hydraulics], Moscow, Energoatomizdat, 1984, 655 p.

16. Hilden M. M., Powell M. S., Yahyaei M. An improved method for grinding mill filling measurement and the estimation of load volume and mass. Minerals Engineering, 2021, vol. 160, article 106638. DOI: 10.1016/j.mineng.2020.106638.

17. Nicolas Blanc, Claire Mayer-Laigle, Jean-Yves Delenne Evolution of grinding energy and particle size during dry ball-milling of silica sand. Powder Technology, 2020, vol. 376, pp. 661— 667. DOI: 10.1016/j.powtec.2020.08.048.

18. Yao Liua, Xiufeng Wangb, Jing Linc, Xianguang Konga An adaptive grinding chatter detection method considering the chatter frequency shift characteristic. Mechanical Systems and Signal Processing. 2020, vol. 142, article 106672. DOI: 10.1016/j.ymssp.2020.106672.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.