Mathematical modeling of dust propagation on mountain ravine walls from tailings storage facilities: A case-study of the Alagir Ravine

Mining is a source of airborne metal and metalloid contaminants, both due to direct emissions and due to wind erosion of mine tailings. Summer dry weather contributes to air pollution with contaminated atmospheric dust is a major condition for migration of elements in the mountain environment. Dispersion of dust occurs in a mountain valley from the Unal’s tailings, located near the village Unal, Alagir district, North Ossetia-Alania, Russia. These tailings are heavily contaminated with lead, zinc, arsenic and other elements. Using a computational hydrodynamic model of the atmosphere, dust transfer from a tailings source is simulated and dust distribution on the slopes of the Alagir’s valley is investigated. The model incorporates regional topographic features, the local weather patterns (wind rose) and dust transfer equation. Calculations of pollution concentration in different directions of the external wind were averaged with coefficients equal to the probability of the corresponding direction in the wind rose. It is shown as the result of calculations that the regional topographical features of terrain and the wind rose are important factors that determine the spatial deposition of dust on the slopes of valley. Comparison of calculations with the results of field measurements is in satisfactory agreement.

Keywords: mountain valley, dust, tailings, mathematical model, OpenFOAM, transport of contaminants, landscape-geochemical migration of elements, satellite meteorological measurements, atmosphere in mountain valleys.
For citation:

Kamenetsky E.S., Radionoff A.A., Timchenko V.U., Panaetova O.S., Sverdlik G.I. Mathematical modeling of dust propagation on mountain ravine walls from tailings storage facilities: A case-study of the Alagir Ravine. MIAB. Mining Inf. Anal. Bull. 2020;(11-1):118-134. [In Russ]. DOI: 10.25018/0236-1493-2020-111-0-118-134.

Acknowledgements:
Issue number: 11
Year: 2020
Page number: 118-134
ISBN: 0236-1493
UDK: 911.2, 504.05, 551.582
DOI: 10.25018/0236-1493-2020-111-0-118-134
Article receipt date: 26.05.2020
Date of review receipt: 03.07.2020
Date of the editorial board′s decision on the article′s publishing: 10.10.2020
About authors:

Kamenetsky E.S.1,2, Professor, Dr. Sci. (Phys. Mathem.), Chief Researcher, esk@smath.ru; ORCID: 0000-0002-7105-3578;
Radionoff A.A.2, Cand. Sci. (Eng.), and Researcher, e-mail: aar200772@mail.ru ORCID: 0000-0002-6934-6873;
Timchenko V.Y.2 graduate student, Department of Mathematical Modeling, timchenko.vasily@ mail.ru;
Panaetova O.S.2, graduate student, ORCID: 0000-0003-2718-5108;
Sverdlik G.I.1, Dr. Sci. (Eng.), Professor;
1 North Caucasian Institute of Mining and Metallurgy (State Technological University), Republic of North Ossetia-Alania, Vladikavkaz, Russia;
2 Southern Mathematical Institute of Vladikavkaz Scientific Center of Russian Academy of Sciences, Republic of North Ossetia-Alania, Vladikavkaz, Russia, esk@smath.ru;

For contacts:

Kamenetsky E.S., e-mail: esk@smath.ru.

Bibliography:

1. EPA. Iron King Mine and Humboldt Smelter. 2010. URL: https://www.epa.gov/ air-emissions-factors-and-quantification/ap-42-compilation-air-emissions-factors (data obrashcheniya 09.10.2019).

2. Gillies J.A., 2013. Fundamentals of aeolian sediment transport: dust emissions and transport near surface. In: Shroder, J. (Editor in Chief), Lancaster, N., Sherman, D.J., Baas, A.C.W. (Eds.). Treatise on Geomorphology. Academic Press, San Diego, CA, vol. 11, Aeolian Geomorphology, pp. 43—63.

3. Kok J.F., Mahowald N.M., Fratini G., Gillies J.A., Ishizuka M., Leys J.F., Mikami M., Park M.-S., Park S.-U., Van Pelt R.S., and Zobeck T.M. An improved dust emission model Part 1: Model description and comparison against measurements. Atmos. Chem. Phys., 2014, 14, pp. 13023—13041, DOI: 10.5194/acp-14—13023—2014.

4. Roache P.J. Verification and Validation in Computational Science and Engineering. Albuquerque, NM: Hermosa Publishers; 1998.

5. Stern F, Wilson RV, Coleman HW, Paterson EG. Comprehensive approach to verification and validation of CFD simulations Part 1: methodology procedures. J. Fluids Eng., 2001, 123, pp. 793—802.

6. Stovern M. at al. Simulation of windblown dust transport from a mine tailings impoundment using a computational fluid dynamics model. Aeolian Res. 2014, 14, pp. 75—83. doi:10.1016/j.aeolia.2014.02.008.

7. Turpin C., Harion J.L. Effect of the topography of an industrial site on dust emissions from open storage yards. Environ Fluid Mech. 2010, 10, pp. 677. https://doi.org/10.1007/ s10652—010—9170—3.

8. Aloyan A.E. Dinamika i kinetika gazovyh primesej i aerozolej v atmosfere [Dynamics and kinetics of gas contaminants and aerosols in the atmosphere]. Kurs lekcij. Moscow: IVM RAN, 2002. 201 p. ISBN 5-901854-05-5. [In Russ]

9. Berlyand M.E. Sovremennye problemy atmosfernoj diffuzii i zagryazneniya atmosfery [Modern problems of atmospheric diffusion and air pollution]. Leningrad: Gidrometeoizdat, 1975. 448 p. [In Russ]

10. Degtyareva T.V., Lihovid A.A., Lysenko A.V., Karaev Yu.I. Regional patterns of chemical elements migration in the landscapes of the North Caucasus. Sustainable Development of Mountain Territories. 2018. T. 10. no. 4. pp. 481—492. [In Russ]

11. Lolaev A.B., Badtiev B.P., Butyugin V.V., Badoev A.S. Determination of consolidation characteristics of tailings of anthropogenic alluvial deposits. Sustainable Development of Mountain Territories. 2017. T. 9. no. 4. p. 355—361. [In Russ]

12. Golik V.I., Sobolev A.A., Dzaparov V.H., Harebov G.Z. Prospects for the development of Sadon deposits. Sustainable Development of Mountain Territories. 2018. T. 10. no. 3. pp. 420—426. [In Russ]

13. Lolaev A.B., Gurbanov A.G., Dzeboev S.O., Ilaev V.E. Contamination of adjacent territories in the area of the Sadon Lead-Zinc Plant (Republic of North Ossetia-Alania). Vestnik VNC RAN. 2017. Tom 6. no. 2. pp. 177—180. [In Russ]

14. Ataeva A.Yu., Sverdlik G.I. Development of experimental installation for research of processes of cleaning dust and gas emissions of enterprises in the foothill zone Sustainable Development of Mountain Territories. 2017. T. 9. no. 1. pp. 92—97. [In Russ]

15. Petrov Yu.S., Sokolov A.A., Raus E.V. Mathematical model for estimating technogenic losses from the operation of mining enterprises. Sustainable Development of Mountain Territories. 2019. T. 11. no. 4. pp. 554—560. [In Russ]

16. Petrov Yu.S., Hadikov M.K. Mathematical model and analysis algorithm of the transport system environmental sustainability in mountain region. Sustainable Development of Mountain Territories. 2018. T. 10. no. 3. pp. 427—435. [In Russ]

17. Teixeira M.A.C., Kirshbaum D.J., Olafsson H., Sheridan P.F. and Stiperski I., eds. The atmosphere over mountainous regions. Frontiers in Earch Science. Frontiers Media SA, Lausanne, Switzerland, 2016, pp. 162. ISBN 9782889450169.

18. Chow F.K., De Wekker S.F.J., Snyder B.J. Mountain Weather Research and Forecasting, Recent Progress and Current Challenges. Springer-Verlag Berlin Heidelberg, 2013, pp. 750. ISBN 978-94-007-4097-6.

19. Pathirana A., Herath S., and Yamada T. Simulating orographic rainfall with a limitedarea, non-hydrostatic atmospheric model under idealized forcing. Atmos. Chem. Phys. 2005, 5, pp. 215—226.

20. Lehner M., Whiteman C.D., Dorninger M. Inversion Build-Up and Cold-Air Outflow in a Small Alpine Sinkhole. Boundary-Layer Meteorology, 2017, 163, pp. 497—522, DOI 10.1007/s10546-017-0232-7.

21. Issa R.I. Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics, 1986, V. 62, 1, pp. 40—65. https://doi.org/10.1016/00219991(86)90099-9.

22. Hargreaves D.M. and Wright N.G. n the use of the k-Epsilon model in commercial CFD software to model the neutral atmospheric boundary layer. J. of wind engineering and industrial aerodymanics, 2007, 95, pp. 355—269.

23. Shapiro A., Fedorovich E. Unsteady convectively driven flow along a vertical plate immersed in a stably stratified fluid. J. Fluid Mech. 2004, vol. 498, pp. 333—352. DOI 10.1017/S0022112003006803.

24. Tan Z.M., Farahani M.M. An analytical study of the diurnal variations of wind in a semigeostrophic ekman boundary layer model. Boundary-Layer Meteorology, 1998, 86, pp. 313—332. https://doi.org/10.1023/A:1000694732459.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.