Mechanism of deformation of adjacent rock mass under heat-emitting practices used

One of the critical geoecological concerns of the present day in the developed countries of the world and in Russia is removal of immense amount of high-level radioactive waste from the biosphere. The only feasible way out is deep burial. Rocks should possess properties which most certainly prevent the spread of radionuclides with groundwater over the whole period of biohazard (more than 10 thousand years). The insulating properties of rocks depend on their stress–strain behavior and thermal exposure. The HLW temperature may reach 1500 °C and keeps on for 150–300 years. This article presents the analytical results on the time-series of unique observations over deformation of sidewall rock mass in underground facilities accommodating powerful heat sources at the Mining and Chemical Plant in Zheleznogorsk. The analysis aimed to explain the adjacent rock mass deformation mechanism and its correlation with the temperature and rock mass quality (structural damage). It is found that the increase in the temperature correlates with the increase in the amplitude of displacements in adjacent rock mass and that the process of sidewall rock deformation has a cyclic behavior. Over the period from 1980 to 1998, the average displacement velocities were: 03–0.45 mm/yr in poor quality rocks heated up to 50–700 °C (maximum velocity 4.65 mm/yr); 0.1–0.2 mm/yr in weakly damaged and heated rocks (maximum velocity 0.6 mm/yr); 0.02–0.04 mm/yr in undamaged rock mass with the natural temperature background. The proposed model of deformation process in time can be used as a framework for the geomechanical experimentation planning in an underground research laboratory toward assessment of structural damage growth in rocks mass containing a manmade heat source.

Keywords: deformation, model, underground openings, adjacent rock mass, deep-seated plugs, heat emission, high-level radioactive waste, underground research laboratory.
For citation:

Tatarinov V. N., Morozov V. N., Tatarinova T. A. Mechanism of deformation of adjacent rock mass under heat-emitting practices used. MIAB. Mining Inf. Anal. Bull. 2022;(10):141-152. [In Russ]. DOI: 10.25018/0236_1493_2022_10_0_141.

Acknowledgements:

The study was performed under the state contract between the Geophysical Center of the Russian Academy of Science and the Ministry of Science and Higher Education of the Russian Federation.

Issue number: 10
Year: 2022
Page number: 141-152
ISBN: 0236-1493
UDK: 622.831
DOI: 10.25018/0236_1493_2022_10_0_141
Article receipt date: 21.04.2022
Date of review receipt: 01.08.2022
Date of the editorial board′s decision on the article′s publishing: 10.09.2022
About authors:

V.N. Tatarinov1,2, Corresponding Member of Russian Academy of Sciences, Dr. Sci. (Eng.), Head of Laboratory, Head of Research-Education Center of GC RAS and NUST «MISiS» «Geodynamics and Geoecology of the Subsoil: Modeling, Forecasting and Monitoring», e-mail: v.tatarinov@gcras.ru, ORCID ID: 0000-0001-7546-2072,
V.N. Morozov1, Dr. Sci. (Eng.), Professor, Chief Researcher, e-mail: v.morozov@gcras.ru, ORCID ID: 0000-0001-6183-0487,
T.A. Tatarinova1,2, Researcher, e-mail: tata@wdcb.ru, ORCID ID: 000-0002-4283-4586.
1 Geophysical Center, Russian Academy of Sciences, 119296, Moscow, Russia,
2 Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, 123242, Moscow, Russia.

 

For contacts:

V.N. Tatarinov, e-mail: v.tatarinov@gcras.ru.

Bibliography:

1. Abramov A. A., Bolshov L. A., Dorofeev A. N., Igin I. M., Kazakov K. S., Krasilnikov V. Ya., Linge I. I., Trokhov N. N., Utkin S. S. Underground research laboratory in the Nizhnekansky massif: evolutionary study of appearance. Radioactive waste. 2020, no. 1(10), pp. 9—21. [In Russ]. DOI: 10.25283/2587-9707-2020-1-9-21.

2. Dorofeev A. N., Bolshov L. A., Linge I. I., Utkin S. S., Savelyeva E. A. Strategic master plan for research to justify the safety of the construction, operation and closure of a facility for deep disposal of radioactive waste. Radioactive waste. 2017, no. 1, pp. 33—42. [In Russ].

3. Anderson E. B., Belov S. V., Kamnev E. N., Kolesnikov I. Yu., Lobanov N. F., Tatarinov V. N., Morozov V. N. Podzemnaya izolyatsiya radioaktivnykh otkhodov [Underground isolation of radioactive waste], Moscow, Izd-vo «Gornaya kniga», 2011, 592 p.

4. Tatarinov V. N., Morozov V. N., Manevich A. I., Tatarinova T. A. Underground research laboratory: to the program of geomechanical research. Radioactive waste. 2019, no. 2(7), pp. 101—118. [In Russ]. DOI: 10.25283/2527-9707-2019-2-101-118.

5. Protosenya A. G., Iovlev G. А. Prediction of spatial stress–strain behavior of physically nonlinear soil mass in tunnel face area. MIAB. Mining Inf. Anal. Bull. 2020, no. 5, pp. 128— 139. [In Russ]. DOI: 10.25018/0236-1493-2020-5-0-128-139.

6. Zakharov V. N., Malinnikova O. N., Trofimov V. A., Filippov Yu. A. Monitoring of the stress-strain state of a rock mass and geodynamic processes in it during the development of coal seams by geoand gas-dynamic phenomena. Mine Surveying Bulletin. 2012, no. 4(90), pp. 43—44. [In Russ].

7. Lingfan Zhang, Duoxing Yang, Zhonghui Chen, Aichun Liu Li Deformation and failure characteristics of sandstone under uniaxial compression using distributed fiber optic strain sensing. Journal of Rock Mechanics and Geotechnical Engineering. 2020, vol. 12, no. 5, pp. 1046— 1055. DOI: 10.1016/j.jrmge.2019.12.015.

8. Chen B., Gong B., Wang S., Tang C. Research on zonal disintegration characteristics and failure mechanisms of deep tunnel in jointed rock mass with strength reduction method. Mathematics. 2022, vol. 10, article 922. DOI: 10.3390/ math10060922.

9. Dongjie Xue, Lan Lu, Lie Gao, Lele Lu, Cheng Chen Prediction of fracture and dilatancy in granite using acoustic emission signal clou. Journal of Rock Mechanics and Geotechnical Engineering. 2021, vol. 13, pp. 1059—1077.

10. Zhon X. P., Wang F. H., Qian Q. H., Zhang B. H. Zonal fracturing mechanism in deep crack-weakened rock masses. Theoretical and Applied Frature Mechanics. 2008, vol. 50, no. 1. DOI: 10.1016/j.tafmec.2008.04.001.

11. Turchaninov I. L., Iofis M. A., Kaspar'yan E. V. Osnovy mekhaniki gornykh porod [Fundamentals of rock mechanics], Leningrad, Nedra, 1989, 488 p.

12. Nguyen Van Min, Eremenko V. A., Sukhorukova M. A., Shermatova S. S. Influence exerted by underground excavation shape and by effective stresses on the formation of a tensile strain zone at a depth greater than 1 km. MIAB. Mining Inf. Anal. Bull. 2020, no. 6, pp. 67—75. [In Russ]. DOI: 10.25018/0236-1493-2020-6-0-67-75.

13. Pin-Qiang Mo, Yong Fang, Hai-Sui Yu. Benchmark solutions of large-strain cavity contraction for deep tunnel convergence in geomaterials. Journal of Rock Mechanics and Geotechnical Engineering. 2020, vol. 12, pp. 596—607.

14. Plúa C., Minh-Ngoc Vu, Seyedi D. M., Armand G. Effects of inherent spatial variability of rock properties on the thermo-hydro-mechanical responses of a high-level radioactive waste repository. International Journal of Rock Mechanics and Mining Sciences. 2021, vol. 145, article 104682.

15. Morozov V. N., Tatarinov V. N., Batugin A. S. An underground research laboratory: new opportunities in the study of the stress-strain state and dynamics of rock mass destruction (problem Definition). Russian Journal of Earth Sciences. 2019, vol. 19, no. 2, pp. 1—13. DOI: 10.2205/2019ES000659.

16. Butov R. A., Drobyshevsky N. I., Moiseenko E. V., Tokarev U. N. Finite element code FENIA verification and application for 3D modelling of thermal state of radioactive waste deep geological repository. Journal of Physics: Conference Series. 2017, vol. 891, no. 1, article 012174. DOI: 10.1088/1742-6596/891/1/012174.

17. Kazakov A. N., Lobanov N. F., and Man’kin V. I. Dynamics of the development of thermophysical processes during underground isolation of heat-releasing radioactive waste in permafrost rocks. Geoekologiya. 1997, no. 2, pp. 36—40. [In Russ].

18. Lukishov B. G., Shvedova N. P., Ivanchenko G. N. Thermomechanical aspects of safe underground disposal of HLW in geological formations. Gornyi Zhurnal. 2021, no. 3, pp. 113—115. [In Russ].

19. Shemyakin E. I., Kurlenya M. V., Oparin V. N., Reva V. N., Glushikhin F. P., Rozenbaum M. A. Opening No. 400 USSR. The phenomenon of zonal disintegration of rocks around underground workings. 1992. [In Russ].

20. Morozov V. N., Tatarinov V. N., Manevich A. I., Losev I. V. Analogy method to determine the stress-strain state of structural-tectonic blocks of the Earth’s crust for the disposal of radioactive waste. Russian Journal of Earth Sciences. 2019, vol. 19, no. 6. DOI: 10.2205/2019ES000687.

21. Kamnev E. N., Morozov V. N., Tatarinov V. N., Kaftan V. I. Geodynamics aspects of investigations in underground research laboratory (Niznekansk massif). Eurasian Mining. 2018, no. 2, pp. 11—14. DOI: 10.17580/em.2018.02.03.

22. Read R. S. 20 years of excavation response studies at AECL's underground research laboratory. International Journal of Rock Mechanics and Mining Sciences. 2004, vol. 41, no. 8, pp. 1251—1275.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.