Bibliography: 1. Abramov A. A., Bolshov L. A., Dorofeev A. N., Igin I. M., Kazakov K. S., Krasilnikov V. Ya., Linge I. I., Trokhov N. N., Utkin S. S. Underground research laboratory in the Nizhnekansky massif: evolutionary study of appearance. Radioactive waste. 2020, no. 1(10), pp. 9—21. [In Russ]. DOI: 10.25283/2587-9707-2020-1-9-21.
2. Dorofeev A. N., Bolshov L. A., Linge I. I., Utkin S. S., Savelyeva E. A. Strategic master plan for research to justify the safety of the construction, operation and closure of a facility for deep disposal of radioactive waste. Radioactive waste. 2017, no. 1, pp. 33—42. [In Russ].
3. Anderson E. B., Belov S. V., Kamnev E. N., Kolesnikov I. Yu., Lobanov N. F., Tatarinov V. N., Morozov V. N. Podzemnaya izolyatsiya radioaktivnykh otkhodov [Underground isolation of radioactive waste], Moscow, Izd-vo «Gornaya kniga», 2011, 592 p.
4. Tatarinov V. N., Morozov V. N., Manevich A. I., Tatarinova T. A. Underground research laboratory: to the program of geomechanical research. Radioactive waste. 2019, no. 2(7), pp. 101—118. [In Russ]. DOI: 10.25283/2527-9707-2019-2-101-118.
5. Protosenya A. G., Iovlev G. А. Prediction of spatial stress–strain behavior of physically nonlinear soil mass in tunnel face area. MIAB. Mining Inf. Anal. Bull. 2020, no. 5, pp. 128— 139. [In Russ]. DOI: 10.25018/0236-1493-2020-5-0-128-139.
6. Zakharov V. N., Malinnikova O. N., Trofimov V. A., Filippov Yu. A. Monitoring of the stress-strain state of a rock mass and geodynamic processes in it during the development of coal seams by geoand gas-dynamic phenomena. Mine Surveying Bulletin. 2012, no. 4(90), pp. 43—44. [In Russ].
7. Lingfan Zhang, Duoxing Yang, Zhonghui Chen, Aichun Liu Li Deformation and failure characteristics of sandstone under uniaxial compression using distributed fiber optic strain sensing. Journal of Rock Mechanics and Geotechnical Engineering. 2020, vol. 12, no. 5, pp. 1046— 1055. DOI: 10.1016/j.jrmge.2019.12.015.
8. Chen B., Gong B., Wang S., Tang C. Research on zonal disintegration characteristics and failure mechanisms of deep tunnel in jointed rock mass with strength reduction method. Mathematics. 2022, vol. 10, article 922. DOI: 10.3390/ math10060922.
9. Dongjie Xue, Lan Lu, Lie Gao, Lele Lu, Cheng Chen Prediction of fracture and dilatancy in granite using acoustic emission signal clou. Journal of Rock Mechanics and Geotechnical Engineering. 2021, vol. 13, pp. 1059—1077.
10. Zhon X. P., Wang F. H., Qian Q. H., Zhang B. H. Zonal fracturing mechanism in deep crack-weakened rock masses. Theoretical and Applied Frature Mechanics. 2008, vol. 50, no. 1. DOI: 10.1016/j.tafmec.2008.04.001.
11. Turchaninov I. L., Iofis M. A., Kaspar'yan E. V. Osnovy mekhaniki gornykh porod [Fundamentals of rock mechanics], Leningrad, Nedra, 1989, 488 p.
12. Nguyen Van Min, Eremenko V. A., Sukhorukova M. A., Shermatova S. S. Influence exerted by underground excavation shape and by effective stresses on the formation of a tensile strain zone at a depth greater than 1 km. MIAB. Mining Inf. Anal. Bull. 2020, no. 6, pp. 67—75. [In Russ]. DOI: 10.25018/0236-1493-2020-6-0-67-75.
13. Pin-Qiang Mo, Yong Fang, Hai-Sui Yu. Benchmark solutions of large-strain cavity contraction for deep tunnel convergence in geomaterials. Journal of Rock Mechanics and Geotechnical Engineering. 2020, vol. 12, pp. 596—607.
14. Plúa C., Minh-Ngoc Vu, Seyedi D. M., Armand G. Effects of inherent spatial variability of rock properties on the thermo-hydro-mechanical responses of a high-level radioactive waste repository. International Journal of Rock Mechanics and Mining Sciences. 2021, vol. 145, article 104682.
15. Morozov V. N., Tatarinov V. N., Batugin A. S. An underground research laboratory: new opportunities in the study of the stress-strain state and dynamics of rock mass destruction (problem Definition). Russian Journal of Earth Sciences. 2019, vol. 19, no. 2, pp. 1—13. DOI: 10.2205/2019ES000659.
16. Butov R. A., Drobyshevsky N. I., Moiseenko E. V., Tokarev U. N. Finite element code FENIA verification and application for 3D modelling of thermal state of radioactive waste deep geological repository. Journal of Physics: Conference Series. 2017, vol. 891, no. 1, article 012174. DOI: 10.1088/1742-6596/891/1/012174.
17. Kazakov A. N., Lobanov N. F., and Man’kin V. I. Dynamics of the development of thermophysical processes during underground isolation of heat-releasing radioactive waste in permafrost rocks. Geoekologiya. 1997, no. 2, pp. 36—40. [In Russ].
18. Lukishov B. G., Shvedova N. P., Ivanchenko G. N. Thermomechanical aspects of safe underground disposal of HLW in geological formations. Gornyi Zhurnal. 2021, no. 3, pp. 113—115. [In Russ].
19. Shemyakin E. I., Kurlenya M. V., Oparin V. N., Reva V. N., Glushikhin F. P., Rozenbaum M. A. Opening No. 400 USSR. The phenomenon of zonal disintegration of rocks around underground workings. 1992. [In Russ].
20. Morozov V. N., Tatarinov V. N., Manevich A. I., Losev I. V. Analogy method to determine the stress-strain state of structural-tectonic blocks of the Earth’s crust for the disposal of radioactive waste. Russian Journal of Earth Sciences. 2019, vol. 19, no. 6. DOI: 10.2205/2019ES000687.
21. Kamnev E. N., Morozov V. N., Tatarinov V. N., Kaftan V. I. Geodynamics aspects of investigations in underground research laboratory (Niznekansk massif). Eurasian Mining. 2018, no. 2, pp. 11—14. DOI: 10.17580/em.2018.02.03.
22. Read R. S. 20 years of excavation response studies at AECL's underground research laboratory. International Journal of Rock Mechanics and Mining Sciences. 2004, vol. 41, no. 8, pp. 1251—1275.