Method of numerical modeling of rheological processes on the contour of single mine working

An analysis of the numerical model's parameters for saliferous rocks influence on the result of the stress-strain state prediction depending on the geometry of mine working under the conditions of using the Drucker-Prager creep model is presented in this paper. The model was realized by finite element method in Simulia Abaqus software package using visco-elastic-plastic geomechanical model of rock salt formations. The numerical model was carried out in the 2D plane deformation formulation with discretization of the considered area into quadrilateral elements. The study considered the averaged mining and geological conditions of transportation drift sinking in the underlying rock salt at the Palashersky section of the Verkhnekamsk potassium salt deposit. The parametric support of the rheological model is based on the results of instrumental observations of the convergence of the rock contour of a single mine working in similar conditions. The method of building a numerical model that ensures the absence of distortions for the stress-strain state prediction of the rock mass on the contour of the rock excavation made in rocks prone to the manifestation of rheological properties is described. It is established that the minimum size of the numerical model should be determined by the largest linear dimensions of the excavation and exceed it at least 16 times. The size of the finite element of the numerical model should be determined by the smallest radius of curvature of the surface and should be no more than one-sixth of its value. The finite element mesh in the vicinity of the rock excavation should consist of structured four nodal elements, and their edges should be oriented normal to the surface.

Keywords: saliferous bedrock, creep, numerical modeling, rheological model, finite element method, rock contour convergence, Drucker-Prager model.
For citation:

Belikov A. A., Beliakov N. A. Method of numerical modeling of rheological processes on the contour of single mine working. MIAB. Mining Inf. Anal. Bull. 2024;(1):94-108. DOI: 10.25018/0236_1493_2024_1_0_94.

Acknowledgements:

The study was supported by the Russian Science Foundation, Project No. 23-17-00144.

Issue number: 1
Year: 2024
Page number: 94-108
ISBN: 0236-1493
UDK: 622.831; 624.121.54
DOI: 10.25018/0236_1493_2024_1_0_94
Article receipt date: 27.09.2023
Date of review receipt: 27.11.2023
Date of the editorial board′s decision on the article′s publishing: 10.12.2023
About authors:

A.A. Belikov1, Graduate Student, e-mail: s205046@stud.spmi.ru, ORCID ID: 0000-0001-5051-0680,
N.A. Beliakov1, Cand. Sci. (Eng.), Assistant Professor, e-mail: Belyakov_NA@pers.spmi.ru, ORCID ID: 0000-0002-9754-501X,
1 Saint-Petersburg Mining University of Empress Catherine II, Saint-Petersburg, Russia.

 

For contacts:

A.A. Belikov, e-mail: s205046@stud.spmi.ru.

Bibliography:

1. Baryakh A. A., Devyatkov S. Yu., Denkevich E. T. Mathematical modelling of displacement during the potash ores mining by longwall faces. Journal of Mining Institute. 2023, vol. 259, pp. 13—20. [In Russ]. DOI: 10.31897/PMI.2023.11.

2. Das A. J., Paul P. S., Mandal P. K., Kumar R., Tewari S. Investigation of failure mechanism of inclined coal pillars: numerical modelling and tensorial statistical analysis with field validations. Rock Mechanics and Rock Engineering. 2021, vol. 54, no. 6. pp. 3263—3289.

3. Baryakh A. A., Devyatkov S. Yu., Denkevich E. T., Mikhailov V. O. Geomechanical supervision of undermined area subsidence monitoring with satellite radars. Gornyi Zhurnal. 2023, no. 8, pp. 40—49. [In Russ]. DOI: 10.17580/gzh.2023.08.06.

4. Habibi R., Moomivand H., Ahmadi M., Asgari A. Stability analysis of complex behavior of salt cavern subjected to cyclic loading by laboratory measurement and numerical modeling using LOCAS (case study: Nasrabad gas storage salt cavern). Environmental Earth Sciences. 2021, vol. 80, no. 8, pp. 1—21. DOI: 10.1007/s12665-021-09620-8.

5. Norvatov Y. A., Petrova I. B., Kotlov S. N. Hydroecological conditions for the opencast mining of the grib diamond deposit. Water Resources. 2012, vol. 39, no. 7, pp. 798—801. DOI: 10.1134/s0097807812070081.

6. Baryakh A. A., Lomakin I. S., Samodelkina N. A., Tenison L. O. Loading of rib pillars in multiple seam mining at the Upper Kama salt deposit. MIAB. Mining Inf. Anal. Bull. 2023, no. 1, pp. 5—19. [In Russ]. DOI: 10.25018/0236_1493_2023_1_0_5.

7. Karasev M. A., Protosenya A. G., Katerov A. M., Petrushin V. V. Analysis of shaft lining stress state in anhydrite-rock salt transition zone. Rudarsko Geolosko Naftni Zbornik. 2022, no. 12, pp. 151—162. DOI: 10.17794/rgn.2022.1.13.

8. Kovalski E. R., Kongar-Syuryun Ch. B., Petrov D. N. Challenges and prospects for several-stage stoping in potash minining. Sustainable Development of Mountain Territories. 2023, vol. 15, no. 2, pp. 349—364. [In Russ]. DOI: 10.21177/1998-4502-2023-15-2-349-364.

9. Nguyen T. T., Do N. A., Anatolyevich K. M., Dias D., Van K. D., Vilner M. Numerical investigation of the horseshoe tunnels structural behavior. Indian Geotech. 2022, vol. 52, pp. 799—814. DOI: 10.1007/s40098-022-00618-y.

10. Karasev M. A., Petrushin V. V., Rysin A. I. The hybrid finite/discrete element method in description of macrostructural behavior of salt rocks. MIAB. Mining Inf. Anal. Bull. 2023, no. 4, pp. 48—66. [In Russ]. DOI: 10.25018/0236_1493_2023_4_0_48.

11. Wagner H. N. R., Niewöhner G., Pototzky A., Hühne C. On the imperfection sensitivity and design of tori-spherical shells under external pressure. International Journal of Pressure Vessels and Piping. 2021, vol. 191, article 104321. DOI: 10.1016/j.ijpvp.2021.104321.

12. Wagner H. N. R., Hühne C., Zhang J., Tang W. On the imperfection sensitivity and design of spherical domes under external pressure. International Journal of Pressure Vessels and Piping. 2020, vol. 179, article 104015. DOI: 10.1016/j.ijpvp.2019.104015.

13. Baryakh A. A., Samodelkina N. A., Konosavsky P. K. Prevention of freshwater breakthrough into potassium mines. Procedia Structural Integrity. 2021, vol. 32, no. 6, pp. 17—25. DOI: 10.1016/j.prostr.2021.09.004.

14. Aleksandrova T., Nikolaeva N., Kuznetsov V. Thermodynamic and experimental substantiation of the possibility of formation and extraction of organometallic compounds as indicators of deep naphthogenesis. Energies. 2023, vol. 16, no. 9, article 3862. DOI: 10.3390/en16093862.

15. Kulikova E. Yu., Balovtsev S. V., Skopintseva O. V. Complex estimation of geotechnical risks in mine and underground construction. Sustainable Development of Mountain Territories. 2023, vol. 15, no. 1, pp. 7—16. [In Russ]. DOI: 10.21177/1998-4502-2023-15-1-7-16.

16. Zhang Y., Xiong X., Musa M., Lyu X. Analysis of a compressive strength model for FRP-confined damaged concrete columns based on the Drucker—Prager yield criterion. Structural Concrete. 2022, vol. 24, pp. 721—735. DOI: 10.1002/suco.202100584.

17. Ali H. Q., Wagner H. N. R., Akalın C., Tabrizi I. E., Hühne C., Yildiz M. Buckling and fracture analysis of thick and long composite cylinders with cutouts under axial compression: An experimental and numerical campaign. Composite Structures. 2023, vol. 324, article 117530. DOI: 10.1016/j.compstruct.2023.117530.

18. Taheri S. R., Pak A. Casing failure in salt rock: Numerical investigation of its causes. Rock Mechanics and Rock Engineering. 2020, no. 59, pp. 3903—3918. DOI: 10.1007/s00603020-02161-9.

19. Zhou R., Guo L., Hong R. Study on energy evolution and damage constitutive model of siltstone. Crystals. 2021, no. 11, article 1271. DOI: 10.3390/cryst11111271.

20. Zemskov A. N., Liskova M. Yu., Sharipzyanova G. Kh. Regularities of changes in the gasdynamic and geomechanical situation at potash mines. Sustainable Development of Mountain Territories. 2021, vol. 13, no. 3, pp. 426—432. [In Russ]. DOI: 10.21177/1998-4502-2021-13-3-426-432.

21. Kashnikov Yu. A., Ashikhmin S. G., Kukhtinskii A. E., Shustov D. V. On the relationship of crack resistance coefficients and geophysical characteristics of rocks of hydrocarbon deposits. Journal of Mining Institute. 2020, no. 241, pp. 83—90. [In Russ]. DOI: 10.31897/PMI.2020.1.83.

22. Kotlov S. N., Tselishchev N. A., Sotnik E. A., Gilyazev D. Kh. Geological and hydrogeological factors of initiation of water inflow in Yakovlevo Mine. Gornyi Zhurnal. 2023, no. 5, pp. 108—113. [In Russ]. DOI: 10.17580/gzh.2023.05.16.

23. Zherlygina E. S., Mustafin M. G., Vasiliev B. Yu., Nikolaev R. V. Determination procedure of linear parameters of movement processes from digital terrain models in Khibiny apatite–nepheline ore mining. Gornyi Zhurnal. 2023, no. 5, pp. 97—103. [In Russ]. DOI: 10.17580/ gzh.2023.05.14.

24. Kiyani V., Esmaili A., Alijani F., Samani S., Vasić L. Investigation of drainage structures in the karst aquifer system through turbidity anomaly, hydrological, geochemical and stable isotope analysis (Kiyan springs, western Iran). Environ Earth Sciences. 2022, vol. 81, no. 22, article 517. DOI: 10.1007/s12665-022-10627-y.

25. Shammazov I. A., Sidorkin D. I., Dzhemilev E. R. Research of the dependence of the pipeline ends displacement value when cutting out its defective section on the elastic stresses in the pipe body. IOP Conference Series: Earth and Environmental Sciencethis link is disabled. 2022, vol. 988, no. 2, article 022077. DOI: 10.1088/1755-1315/988/2/022077.

26. Shammazov I. A., Batyrov A. M., Sidorkin D. I., Van Nguyen T. Study of the effect of cutting frozen soils on the supports of above-ground trunk pipelines. Applied Sciences. 2023, vol. 13, no. 5, article 3139. DOI: 10.3390/app13053139.

27. Vasilev B. Yu., Mustafin M. G. Digital relief models of open-pit mining facilities: Analysis and optimization. MIAB. Mining Inf. Anal. Bull. 2023, no. 9, pp. 141—159. [In Russ]. DOI: 10.25018/0236_1493_2023_9_0_141.

28. Shammazov I., Dzhemilev E., Sidorkin D. Improving the method of replacing the defective sections of main oil and gas pipelines using laser scanning data. Applied Sciences. 2023, vol. 13, no. 1, article 48. DOI: 10.3390/app13010048.

29. Solov'ev V. A., Aptukov V. N., Vaulina I. B. Podderzhanie gornykh vyrabotok v porodakh solenosnoy tolshchi. Teoriya i praktika [Maintenance of mine workings in salt-bearing rocks. Theory and practice], Novosibirsk, Nauka, 2017, 264 p.

30. Kashnikov Yu. A., Ermashov A. O., Efimov A. A. Geological and geomechanical model of the section of the Verkhnekamskoye potash deposit. Journal of Mining Institute. 2019, no. 237, pp. 259—267. [In Russ]. DOI: 10.31897/PMI.2019.3.259.

31. Shashenko A. N., Pustovoytenko V. P., Sdvizhkova E. A. Geomekhanika [Geomechanics], Kiev, Noviy druk, 2016, 258 p.

32. Frenelus W., Peng H., Zhang J. Creep behavior of rocks and its application to the longterm stability of deep rock tunnels. Applied Sciences. 2022, vol. 12, no. 17, pp. 1—35. DOI: 10.3390/app12178451.

33. Zhang L., Wang X. Study on nonlinear damage creep model for rocks under cyclic loading and unloading. Advances in Materials Science and Engineering. 2021, vol. 2021, article 5512972, pp. 1—10. DOI: 10.1155/2021/5512972.

34. Abdelwahab A., Chishegorov D., Ivanov S., Mikhailov A. Influence of the main operational factors on the working capacity of a mining hydraulic excavator. E3S Web of Conferences. 2021, vol. 326, article 00007. DOI: 10.1051/e3sconf/202132600007.

35. Fei W., Jie L., Quanle Z., Cunbao L., Jie C., Renbo G. A triaxial creep model for salt rocks based on variable-order fractional derivative. Mechanics of Time-Dependent Materials. 2021, vol. 25, no. 1, pp. 101—118. DOI: 10.1007/s11043-020-09470-0.

36. Deng H., Zhou H., Li L. Fractional creep model of temperature-stress-time coupled damage for deep coal based on temperature-equivalent stress. Results in Physics. 2022, vol. 39, article 105765, pp. 1—12. DOI: 10.1016/j.rinp.2022.105765.

37. Jifeng H., Zhongping G., Jinbo L., Lijuan Zh. Study on triaxial creep test and theoretical model of cemented gangue-fly ash backfill under seepage-stress coupling. Construction and Building Materials. 2021, vol. 273. DOI: 10.1016/j.conbuildmat.2020.121722.

38. Asanov V. A., Pankov I. L., Kuzminyh V. S., Morozov I. A. The methodical aspects of strength, deformation and energy characteristic determination of salt rocks under direct tensile loading of rock specimens in laboratory conditions. PNRPU Mechanics Bulletin. 2018, no. 4, pp. 58—68. [In Russ]. DOI: 10.15593/perm.mech/2018.4.05.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.