Method of experimental determination of deformation and flow characteristics in rocks with regular block structure

The method of evaluation of deformation and flow characteristics in rocks with quasi-regular structure is developed and tested on a laboratory scale. The method uses the idea of physical averaging and testing of samples composed of twin structural components. Using an original technology and a manmade geomaterial (mixture of calibrated sand and cryogel at a ratio of 7 : 3), the plates 10×7×1 cm and cylinders (diameter 3 cm, height 6 cm) were manufactured. The cylinders were tested using standard procedures, and the characteristics of the manmade geomaterial were determined: the Young modulus Е=370 MPa, the uniaxial compression strength, the permeability km=8.4 darcy. The plates in number of 6 were used to make a layered sample with five discontinuities; the sample was subjected to stepped loading (s(n)–stress) applied in orthogonal direction to the discontinuities. From the measured contraction of the sample at the known E, the empirical constants were found for the two-parametric homographic function describing the discontinuity convergence and opening d versus s. Then, the side surface of the sample was isolated, the sample was placed in a sealed cell and subjected to the same program stepped loading. At each loading step n, the stationary flow tests were carried out, and the gas flow rate Qni was recorded at the present inlet pressure Pi . The geomechanical model of the experiment was built, and using the obtained analytical solution, the test data interpretation was undertaken: at the known values of d and km, and the measured Qni, the discontinuity permeability kf was calculated at each value of s. The empirical dependences of kf (d) and kf (s) were found.

Keywords: flow, stress, permeability, block sample, discontinuity, laboratory experiment, manmade geomaterial.
For citation:

Nazarov L. A., Golikov N. A., Skulkin A. A., Nazarova L. A. Method of experimental determination of deformation and flow characteristics in rocks with regular block structure. MIAB. Mining Inf. Anal. Bull. 2023;(11):70-81. [In Russ]. DOI: 10.25018/0236_1493_ 2023_11_0_70.


The study was supported by the Russian Science Foundation, Project No. 23-27-00339.

Issue number: 11
Year: 2023
Page number: 70-81
ISBN: 0236-1493
UDK: 622.453
DOI: 10.25018/0236_1493_2023_11_0_70
Article receipt date: 08.08.2023
Date of review receipt: 11.09.2023
Date of the editorial board′s decision on the article′s publishing: 10.10.2023
About authors:

L.A. Nazarov1, Dr. Sci. (Phys. Mathem.), Chief Researcher, e-mail:, ORCID ID: 0000-0002-9857-295X,
N.A. Golikov1, Cand. Sci. (Eng.), Senior Researcher, e-mail:, ORCID ID: 0000-0001-8101-230X,
A.A. Skulkin1, Junior Researcher, e-mail:, 
L.A. Nazarova, Dr. Sci. (Phys. Mathem.), Chief Researcher, Chinakal Institute of Mining of Siberian Branch of Russian Academy of Sciences, 630091, Novosibirsk, Russia, e-mail:, ORCID ID: 0000-0002-3712-2939,
1 Novosibirsk State University, 630090, Novosibirsk, Russia.


For contacts:

L.A. Nazarov, e-mail:


1. Ruban A. D., Artem'ev V. B., Zaburdyaev V. S., Zakharov V. N., Loginov A. K., Yutyaev E. P. Podgotovka i razrabotka vysokogazonosnykh ugol'nykh plastov [Preparation and development of high-gas-bearing coal seams], Moscow, Izd-vo «Gornaya kniga», 2010, 500 p.

2. Schissler A. P. Coal mining, design and methods of. Encyclopedia of Energy. Cleveland C. J. (Ed.), Elsevier, 2004, pp. 485—494. DOI: 10.1016/b0-12-176480-x/00284-9.

3. Zaburdyaev V. S., Malinnikova O. N., Trofimov V. A. Metanoobil'nye shakhty: dobycha uglya, gazovydelenie, metanovaya opasnost' [Methane-rich collieries: coal mining, gas emission, methane hazard], Kaluga, OOO «Manuskript», 2020, 334 p.

4. Thakur P. Advanced reservoir and production engineering for coal bed methane. Houston, Gulf Professional Publishing, 2016, 404 р. DOI: 10.1016/B978-0-12-803095-0.00013-2.

5. Mosleh M. H., Sedighi M., Babaei M., Turner M. Geological sequestration of carbon dioxide. Managing Global Warming, Letcher T. M. (Ed.). Academic Press, 2019, pp. 487—500. DOI: 10.1016/b978-0-12-814104-5.00016-8.

6. Nazarov L. A., Nazarova L. A. Some geomechanical aspects of gas recovery from coal seams. Journal of Mining Science. 1999, vol. 35, no. 2, pp. 135—145. DOI: 10.1007/BF02565367.

7. Zakharov V. N., Trofimov V. A., Filippov Yu. A., Shlyapin A. V. About degassing of the coalrocks massif in the roof of the coal seam being worked out. MIAB. Mining Inf. Anal. Bull. 2022, no. 11, pp. 20—36. [In Russ]. DOI: 10.25018/0236_1493_2022_11_0_20.

8. Robinson P. R., Hsu C. S. Introduction to petroleum technology. Springer Handbook of Petroleum Technology. Cham, Springer. 2017, pp. 1—83. DOI: 10.1007/978-3-319-49347-3_1.

9. Averin A. P., Belousov F. S., Pashichev B. N., Trofimov V. A. Gas flow patterns in rock samples. MIAB. Mining Inf. Anal. Bull. 2021, no. 10, pp. 100—111. [In Russ]. DOI: 10.25018/ 0236_1493_2021_10_0_100.

10. Seidle J. Foundations of coalbed methane reservoir engineering. PennWell Books, 2011, 416 p.

11. Tailakov O. V., Makeev M. P., Utkaev E. A. Numerical modeling and laboratory testing of reservoir properties of coal. MIAB. Mining Inf. Anal. Bull. 2022, no. 9, pp. 99—108. [In Russ]. DOI: 10.25018/0236_1493_2022_9_0_99.

12. Nazarova L. A., Nazarov L. A., Polevshchikov G. Ya., Rodin R. I. Inverse problem solution for estimating gas content and gas diffusion coefficient of coal. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopaemykh. 2012, no. 5, pp. 15—23. [In Russ]. DOI: 10.1134/ S1062739148050024.

13. Pan Z., Connell L. D. Modelling permeability for coal reservoirs. A review of analytical models and testing data. International Journal of Coal Geology. 2012, vol. 92, pp. 1—44. DOI: 10.1016/j.coal.2011.12.009.

14. Thomas L. J., Thomas L. P. Coal geology. John Wiley & Sons, 2002, 384 p.

15. Dorofeeva T. V., Krasnov S. G., Lebedev B. A., Petrova G. V., Pozinenko B. V. Kollektory neftey Bazhenovskoy svity Zapadnoy Sibiri [Oil reservoirs of the Bazhenov suite of Western Siberia], Leningrad, Nedra, 1983, 131 p.

16. Rutqvist J., Liu H.-H. A new coal-permeability model: internal swelling stress and fracture—matrix interaction. Transport in Porous Media. 2010, vol. 82, pp. 157—171. DOI: 10.1007/ s11242-009-9442-x.

17. van Golf-Racht T. Fundamentals of fractured reservoir engineering. Elsevier, 1982, 732 p.

18. Lv R., Xue J., Zhang Z., Ma X., Li B., Zhu Y., Li Y. Experimental study on permeability and stress sensitivity of different lithological surrounding rock combinations. Frontiers in Earth Science. 2022, vol. 9—2021. DOI: 10.3389/feart.2021.762106.

19. Feng Y., Tang Ho., Tang Ha. Leng Y., Shi X., Liu J.,Wang Z. Influence of geomechanics parameters on stress sensitivity in fractured reservoir. Frontiers in Earth Science. 2023, vol. 11. DOI: 10.3389/feart.2023.1134260.

20. Zakharov V. N., Malinnikova O. N., Trofimov V. A., Filippov Yu. A. Effect of gas content and actual stresses on coalbed permeability. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopaemykh. 2016, no. 2, pp. 16—25. [In Russ]. DOI: 10.1134/S1062739116020345.

21. Meng Y., Li Z., Lai F. Experimental study on porosity and permeability of anthracite coal under different stresses. Journal of Petroleum Science and Engineering. 2015, vol. 133, pp. 810—817. DOI: 10.1016/j.petrol.2015.04.012.

22. Esaki T., Du S., Mitani Y., Ikusada K., Jing L. Development of a shear-flow test apparatus and determination of coupled properties for a single rock joint. International Journal of Rock Mechanics and Mining Sciences. 1999, vol. 36, no. 5, pp. 641—650. DOI: 10.1016/ S0148-9062(99)00044-3.

23. Blocher G., Kluge C., Milsch H., Cacace M., Jacquey A., Schmittbuhl J. Permeability of matrix-fracture systems under mechanical loading—constraints from laboratory experiments and 3-D numerical modelling. Advances in Geosciences. 2019, vol. 49, pp. 95—104. DOI: 10.5194/adgeo-49-95-2019.

24. Zilong Zhou, Jing Zhang, Xin Cai, Shanyong Wang, Xueming Du, Haizhi Zang Permeability experiment of fractured rock with rough surfaces under different stress conditions. Geofluids. 2020, vol. 2020, article 9030484. DOI: 10.1155/2020/9030484.

25. Alcolea A., Kuhlmann U., Marschall P., Lisjak A., Grasselli G., Mahabadi O., de la Vaissiere R., Leung H., Shao H. A pragmatic approach to abstract the excavation damaged zone around tunnels of a geological radioactive waste repository: application to the HG-A experiment in Mont Terri. Radioactive Waste Confinement: Clays in Natural and Engineered Barriers. Geological Society, London, Special Publications. 2016, vol. 443, pp. 127—147. DOI: 10.1144/SP443.8.

26. Tiab D., Donaldson E. C. Petrophysics: Theory and practice of measuring reservoir rock and fluid transport properties. Gulf Professional Publishing, 2011, 950 p.

27. Tan W., Wang P. Experimental study on seepage properties of jointed rock-like samples based on 3D printing techniques. Advances in Civil Engineering. 2020, vol. 2020, article 9403968. DOI: 10.1155/2020/9403968.

28. Witherspoon P. A., Wang J. S. Y., Iwai K., Gale J. E. Validity of cubic law for fluid flow in a deformable rock fracture. Water Resources Research. 1980, vol. 16, pp. 1016—1024.

29. Barton N. R. Deformation phenomena in jointed rock. Geotechnique. 1986, vol. 36, no. 2, pp. 147—167. DOI: 10.1680/geot.1986.36.2.147.

30. Nazarova L. A., Nazarov L. A., Skulkin A. A., Golikov N. A. Stress-permeability dependence in geomaterials from laboratory testing of cylindrical specimens with central hole. Fizikotekhnicheskiye problemy razrabotki poleznykh iskopaemykh. 2019, no. 5, pp. 18—25. [In Russ]. DOI: 10.15372/FTPRPI20190503.

31. Tan R., Chai J., Cao C. Experimental investigation of the permeability measurement of radial flow through a single rough fracture under shearing action. Advances in Civil Engineering. 2019, vol. 2019, article 6717295. DOI: 10.1155/2019/6717295.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.