Geometrization of clay impurity areas in limestone rock mass based on geophysical research

Authors: Timokhin A.V.

The subject of the research is enclosing rock mass of Chanva limestone deposit, insitu distribution of impurity rocks, as well as material constitution of rocks shipped to alkali works, pre-sieving plant and external dumps. The study used maps and sections of layers and parameters of clay impurity areas, and modeling of composition of broken rocks disintegrated by blasting. The electrometry methods were used for local areal measurements depthward rock blocks, large-scale surveys on 3 horizons in combination with vertical sounding. The models of rock piles disintegrated by blasting used the measured elastoplastic properties of rock mass and the calculations resultant from solutions of triangles. The obtained results include: the typical structure of limestone–clay systems as explicit forms of the origin and occurrence of impurity substances due to the facies-tectonic genesis; the geological and structural parameters of broken limestone piles after blasting. A geophysical research procedure is proposed for the implementation of high-precision discrimination of rock mass to be developed using the open geotechnology. The ways of adjusting the input and calculated parameters to take into account the changes in geological situation with increasing depth of mining and during extraction of mineral reserves from peripheral areas of the deposit are justified. The article presents the developed method for loss and dilution standardization, as well as the algorithms for obtaining information on mineral grades and for optimizing mining operations under current conditions and in the long term of Kostanok site operation in Chanva limestone field.

Keywords: limestone deposit, alkali works, electrometry, impurity argillization structure measurements, models of broken rock disintegration by blasting, mineral grade planning, energy and resource saving, geotechnology.
For citation:

Timohin A. V. Geometrization of clay impurity areas in limestone rock mass based on geophysical research. MIAB. Mining Inf. Anal. Bull. 2021;(5—1):162—176. [In Russ]. DOI: 10.25018/0236_1493_2021_51_0_162.

Acknowledgements:

The article is based on the R&D project implemented within the framework of the Basic Research Program of the Governmental Academies of Sciences, Topic 1: Methods to Take into Account Transient Processes in Mining Deep-Seated Mineral Deposits of Complex Structure, No. 0405-2019-0005.

Issue number: 5
Year: 2021
Page number: 162-176
ISBN: 0236-1493
UDK: 622.234.57:622.02
DOI: 10.25018/0236_1493_2021_51_0_162
Article receipt date: 15.12.2020
Date of review receipt: 05.04.2021
Date of the editorial board′s decision on the article′s publishing: 10.04.2021
About authors:

Timokhin A. V., research associate, mineral raw material quality Management sector, Institute of mining, Ural branch of the Russian Academy of Sciences, Ekaterinburg, Russia, timohin.igduran.geo@mail.ru.

For contacts:
Bibliography:

1. Lapshin N. S. Ways to reduce losses and dilution of ore in open-pit mining of ore bodiesl. Novaya nauka: Strategii i vektory razvitiya. 2016. no. 6—1 (88). pp. 31—34. [In Russ]

2. Fomin. S. I., Chan Dinb Bao Optimization of losses and ore dilution in open-pit mining of complex-structured carbonate deposits. Markshejderiya i nedropol’zovanie. 2016. no. 2 (82). pp. 58—60. [In Russ]

3. Kogel J. E. Industrial Minerals & Rocks: Commodities, Markets, and Uses / Jessica Elzea Kogel. SME papers and articles. 2006. ISBN 9780873352338.

4. Kurchin G. S., Ananenko K. E., Prokop’ev I. V., Kirsanov A. N. Methodological foundations of loss normalization and dilution in mining, taking into account the impact on technological indicators during enrichment. Markshejderiya i nedropol’zovanie. 2017. no. 6 (92). pp. 55—59. [In Russ]

5. Kudryashov A. I., Fomin V. I., Kolesnikov V. P. Chan’vinskoe mestorozhdenie izvestnyakov [Chanvinsky limestone deposit]. Perm’:[Tip. kupca Tarasova], 1999. 82 p. [In Russ]

6. Timohin A. V., Laptev Yu. V. Petrophysical basis for the application of electrometry on carbonate massifs of bauxite (JSC “SUBR”) and magnesite deposits (JSC “Kombinat magnezit”). MIAB. Mining Inf. Anal. Bull. 2007. no. 3. pp. 267—271. [In Russ]

7. Petrofizika: Spravochnik. V trekh knigah. Kniga pervaya. Gornye porody i poleznye iskopaemye [Petrophysics: Handbook. In three books. Book one. Rocks and minerals]. Pod red. N. B. Dortman. Moscow: Nedra, 1992. 361 p. [In Russ]

8. Sokolov D. S. Osnovnye usloviya razvitiya karsta [The main conditions for the development of karst]. Moscow: Gosgeoltekhizdat, 1962. 322 p. [In Russ]

9. Trewin N. H. Lake-level changes, sedimentation and faunas in a Middle Devonian basin-margin fish bed. N. H. Trewin, R. G. Davidson. Journal of the Geological Society, 1999. no. 156 (3). 535—548 p. doi: 10.1144.

10. Frank U. Multi-perspective enterprise modeling: foundational concepts, prospects and future research challenges. Software & Systems Modeling, 2014, Vol. 13, no. 3, pp. 941—962.

11. Kantemirov V. D., Titov R. S., Timohin A. V., Yakovlev A. M.Improvement of methods for accounting for increased losses and dilution of mineral resources in mining. MIAB. Mining Inf. Anal. Bull. 2020. no. 3—1. pp. 466—477. [In Russ]

12. Shatov A. A. Potential Utilizations of Soda Production Wastes / A. A. Shatov, M. A. Dryamina, R. N. Badertdinov. Chemistry for Sustainable Development, 2004. no. 12. pp. 565—571.

13. Timohin A. V., Laptev Yu. V., Titov R. S., Yakovlev A. M. Geometrization of mineralization using electrometry (on the example of refractory and bauxite deposits). Izv. vuzov. Gornyj zhurnal. 2012. no.6. pp. 94—102. [In Russ]

14. Ovchinnikov I. K. Teoriya polya [Field theory]. Moscow: Nedra, 1978. 327 p. [In Russ]

15. Semenov A. S. Vliyanie struktury na soprotivlenie agregatov [Influence of structure on the resistance of aggregates. proceedings]. Materialy VSEGEI, Moscow: Geofizika, 1948. no. 12. pp. 43—61. [In Russ]

16. Kantemirov V. D., Timohin A. V., Titov R. S. Assessment  of  contamination  of the array of limestone with the use of methods of electrical prospecting. Markshejderiya i nedropol’zovanie. 2018. no. 2. pp. 21—31 [In Russ]

17. Bajkov B. N. Snizhenie poter’ i razubozhivaniya rud na kar’erah cvetnoj metallurgii [Reduction of losses and dilution of ores in the quarries of non-ferrous metallurgy]. Moscow: «Nedra», 1977. 296 p. [In Russ]

18. Shuj R. T. Poluprovodnikovye rudnye mineraly [Semiconductor ore minerals]. Leningrad: Nedra, 1979. 288 . [In Russ]

19. Wright V. P. A revised Classification of Limestones. Sedimentary Geology, 1992. no. 76 (3—4). pp. 177—185.

20. Marakushev A. A., Bobrov A. V. Metamorficheskaya petrologiya [Metamorphic petrology]. Moscow: Izd-vo Mosk. un-ta: Nauka, 2005. 256 p. [In Russ]

21. Matthews T. Impoverishment and ore loss projections: Strategies and considerations. SME Annual Conference and Expo and CMA 117th National Western Mining Conference. Mining: Navigating the Global Waters: Denver., United States., 2015. pp. 529—532.

22. Oy Leuangthong, K. Daniel Khan, Clayton V. Deutsch Solved Problems in Geostatistics., Wiley, 2008. 208 p.

23. Hyongdoo J. Decision support system of unplanned dilution and ore-loss in underground stoping operations using a neurofuzzy system. Journal Applied Soft Computing archive, 2015, Vol. 32, Iss. C, rr. 1—12.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.