Method of complex assessment of on-board information and control systems on mining machines

For a full-fledged information interaction of a vehicle with transport infrastructure and management, it is necessary to use intelligent transport systems, this can have a particularly serious impact on the cargo transportation process. To increase the coefficient of technical readiness of quarry excavators, intelligent systems are being implemented – information, diagnostic and telecommunication. Based on a system analysis of the functioning of excavators at a mining enterprise, the possibility of reducing the downtime of quarry excavators spent on maintenance and troubleshooting has been established, which means reducing economic losses. The directions of increasing the productivity of mining machines are determined, taking into account the influence of the technical condition of cargo vehicles. An approach is proposed to increase the coefficient of technical readiness of cargo transport through the introduction of on-board information and control systems. An algorithm for collecting and processing information received from on-board information and control systems of vehicles with the ability to track the technical condition of systems in real time and the subsequent creation of a resource forecasting model is presented. A method of integrated assessment of on-board information and control systems has been developed to select the optimal composition of systems depending on the weight of criteria affecting the efficiency of the vehicle.

Keywords: excavators, on-board information and control system, method of integrated assessment of on-board systems, cargo transport, improving the efficiency of using cargo transport, efficiency criteria, monitoring of technical condition, intelligent transport systems.
For citation:

Safiullin R. N., Safiullin R. R., Efremova V. A. Method of complex assessment of on-board information and control systems on mining machines. MIAB. Mining Inf. Anal. Bull. 2023;(9-1):49-63. [In Russ]. DOI: 10.25018/0236_1493_2023_91_0_49.

Issue number: 9
Year: 2023
Page number: 49-63
ISBN: 0236-1493
UDK: 656.13
DOI: 10.25018/0236_1493_2023_91_0_49
Article receipt date: 02.05.2023
Date of review receipt: 03.07.2023
Date of the editorial board′s decision on the article′s publishing: 10.08.2023
About authors:

R.N. Safiullin1, Dr. Sci. (Eng.), Professor, e-mail:, ORCID ID: 0000-0002-8765-6461, 
R.R. Safiullin1, Cand. Sci. (Eng.), Assistant Professor, e-mail:, ORCID ID: 0000-0003-2315-3678,
V.A. Efremova1, Graduate Student, e-mail:, ORCID ID: 0000-0002-3981-6061,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.


For contacts:

R.N. Safiullin, e-mail:


1. Shibanov D. A., Ivanov S. L., Yemelyanov A. A., Pumpur E. V. Evaluation of working efficiency of open pit shovels in real operating conditions. MIAB. Mining Inf. Anal. Bull. 2020, no. 10, pp. 86—94. [In Russ]. DOI: 10.25018/0236-1493-2020-10-0-86-94.

2. Nazarychev A. N., Dyachenok G. V., Sychev Y. A. A reliability study of the traction drive system in haul trucks based on failure analysis of their functional parts. Journal of Mining Institute. 2023, vol. 261, pp. 363—373. [In Russ].

3. Malafeev S. I., Malafeev S. S. Information and control elements of electric mining shovels. MIAB. Mining Inf. Anal. Bull. 2021, no. 4, pp. 33—45. [In Russ]. DOI: 10.25018/0236_ 1493_2021_4_0_33.

4. Kurganov V. M., Gryaznov M. V., Kolobanov S. V. Assessment of operational reliability of quarry excavator-dump truck complexes. Journal of Mining Institute. 2020, vol. 241, pp. 10. DOI: 10.31897/pmi.2020.1.10

5. Katsuba Yu. N., Karavaev N. A. Increasing the level of integration of unmanned technologies into the operation of agricultural machinery. Izvestia MAAO. 2023, no. 67, pp. 60—65.

6. Shpenst V. A., Terleev A. V. Evaluation of Lorawan gateway coverage for Smart City applications. Modern Innovations, Systems and Technologies. 2021, no. 220, pp. 513—521. [In Russ]. DOI: 10.1007/978-981-33-6632-9_45.

7. Grigorescu S., Trasnea B., Cocias T., Macesanu G. Survey of deep learning techniques for autonomous driving. Journal of Field Robotics. 2022, vol. 37, no. 3, pp. 362—386. DOI: 10.1002/rob.21918.

8. Kozyaruk A. E., Kamyshyan A. M. Improving the energy efficiency of the electromechanical transmission of an open-pit dump truck. Journal of Mining Institute. 2019, vol. 239, pp. 576. [In Russ]. DOI: 10.31897/pmi.2019.5.576.

9. Vytrishko F. M., Sazonov V. M., Efanov V. V., Shibirov A. V., Lapshin I. A. Patent RU 2013149686/08, 20.12.2014.

10. Brummelen V., O’Brien M., Gruyer D., Najjaran H. Autonomous vehicle perception: The technology of today and tomorrow. Transportation Research Part C: Emerging Technologies. 2018, vol. 89, pp. 384—406. DOI: 10.1016/j.trc.2018.02.012.

11. Lomazov V., Lomazov A., Petrosov D., Akupiyan O. Intelligent evaluation of implementation road infrastructure development program. Transportation Research Procedia. 2022, vol. 63, pp. 1089—1094. DOI: 10.1016/j.trpro.2022.06.111.

12. Yang C., Zha M., Wang W., Liu K., Xiang C. Efficient energy management strategy for hybrid electric vehicles/plug-in hybrid electric vehicles: Review and recent advances under intelligent transportation system. IET Intelligent Transport Systems. 2020, vol. 14, no. 7, pp. 702— 711. DOI: 10.1049/iet-its.2019.0606.

13. Ladanov V. I. Application of onboard information and control systems on military automotive equipment of troops. Al'manakh Permskogo voennogo instituta voysk natsional'noy gvardii. 2022, no. 2(6), pp. 85—91. [In Russ].

14. Ge J., Avedisov S. S., He C., Qin W. B., Sadeghpour M., Orosz G. Experimental validation of connected automated vehicle design among human-driven vehicles. Transportation Research Part C: Emerging Technologies. 2018, vol. 91, pp. 335—352. DOI: 10.1016/j.trc.2018.04.005.

15. Zhang L., Orosz G. Beyond-line-of-sight identification by using vehicle-to-vehicle communication. IEEE Transactions on Intelligent Transportation Systems. 2018, vol. 19, no. 6, pp. 1962—1972. DOI: 10.1109/TITS.2017.2747582.

16. Shpenst V. A. Integration of telecommunication and electrical systems in mines and underground structures. Journal of Mining Institute. 2019, vol. 235, pp. 78—87. [In Russ]. DOI: 10.31897/pmi.2019.1.78

17. Baake E., Shpenst V. A. Recent scientific research on electrothermal metallurgical processes. Journal of Mining Institute.2019, vol. 240, pp. 660—668. [In Russ]. DOI: 10.31897/pmi. 2019.6.660.

18. Cao H., Gangakhedkar S., Ali A., Gharba M., Eichinger J. A 5G V2X testbed for cooperative automated driving. IEEE Vehicular Networking Conference, USA. 2016, pp. 1—4. DOI: 10.1109/VNC.2016.7835939.

19. Aramrattana M., Larsson T., Jansson J., Nabo A. A simulation framework for cooperative intelligent transport systems testing and evaluation. Transportation Research Part F: Traffic Psychology and Behavior. 2019, vol. 61, pp. 268—280. DOI: 10.1016/j.trf.2017.08.004.

20. Degtyarev Yu. Classification of categorical structures of structural complexities based on prototypes in simple complexes. Proceedings of the 10th International conference on the application of fuzzy systems and soft computing. 2012, pp. 27—37.

21. Kondratiev A. A. Barriers of ITS implementation processes. Sbornik trudov Mezhdunarodnoy akademii transporta [Proceedings of the International Academy of Transport], 2014, no. 17, pp. 89—95. [In Russ].

22. Kisulenko B. V. The concept of rationing the safety of cars with a high level of automation. Avtomobil'naya promyshlennost'. 2019, no. 4, pp. 1—5. [In Russ].

23. Kisulenko B. V. Safety of automated and unmanned vehicles and its assessment during admission to operation. Avtomobil'naya promyshlennost'. 2022, no. 2, pp. 7—13. [In Russ].

24. Borisov S. B., Koltunova E. A., Klavdiev S. N. Improvement of the structure of ionization technology for the heaviest asynchronous electrical equipment of a mine electric locomotive. Journal of Mining Institute. 2021, vol. 247, pp. 1—8. [In Russ]. DOI: 10.31897/pmi.2021.1.12.

25. Fedotov V. N., Komarov Yu. Ya., Ganzin S. V. Optimization of using fixed route taxibuses with account of security of road traffic and air pollution in big cities. Transportation Research Procedia. 2018, vol. 36, pp. 173—178. DOI: 10.1016/j.trpro.2018.12.060.

26. Seliverstov Ya. A., Gergel G. Yu., Seliverstov S. A., Nikitin K. V., Development of intelligent transport systems based on mobile technologies and procedures for analyzing the social activity of the urban population. Computing, Telecommunications and Control. 2018, vol. 11, pp. 47–64. [In Russ]. DOI: 10.18721/JCSTCS.11105.

27. Buzmakov S. A., Sannikov P. Yu., Kuchin L. S., Igosheva E. A., Abdulmanova I. F. The use of unmanned aerial photography for the diagnosis of technogenic transformation of the natural environment during the operation of an oil field. Journal of Mining Institute. 2023, vol. 260, pp. 180—193. [In Russ]. DOI: 10.31897/pmi.2023.22.

28. Kurganov V. M., Gryaznov M. V., Kolobanov S. V. Evaluation of the reliability of the functioning of excavator-automobile complexes in a quarry. Journal of Mining Institute. 2020, vol. 241, pp. 10—21. [In Russ]. DOI: 10.31897/pmi.2020.1.10.

29. Makharatkin P. N., Abdulaev E. K., Vishnyakov G. Yu., Botyan E. Yu., Pushkarev A. E. Improving the efficiency of the operation of dump trucks based on the justification of their rational speed using simulation modelling. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 237—250. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_237.

30. Komashinskiy V. I., Malygin I. G., Korolev O. Introduction into cognitive multimodal transportation systems. Transportation Research Procedia. 2020, vol. 50, pp. 273—279. DOI: 10.1016/j.trpro.2020.10.033.

31. Boryaev A. A., Malygin I. G., Marusin A. V. Areas of focus in ensuring the environmental safety of motor transport. Transportation Research Procedia. 2020, vol. 50, pp. 68—76. DOI: 10.1016/j.trpro.2020.10.009.

32. Simonova L. A., Demyanov D. N., Kapitonov A. A. Intelligent information system of requirements formation in the design of automotive equipment. STIN. 2020, no. 7, pp. 11—15.

33. Simonova L. A., Kapitonov A. A., Klochkova K. V. Building an intelligent superstructure of an automated internal combustion engine diagnostics system. Scientific and Technical Volga region Bulletin. 2020, no. 12, pp. 110—113. [In Russ].

34. Andreychuk A. P., Gurko A. V. Trends in the introduction of artificial intelligence and robotics technologies in the Arctic: experience of the Russian Federation. MIAB. Mining Inf. Anal. Bull. 2022, no. 10-2, pp. 24—38. [In Russ]. DOI: 10.25018/0236_1493_2022_102_0_24.

35. Safiullin R. N., Reznichenko V. V., Safiullin R. R. The software adaptive system for managing the heavy cargo transportation process based on the automated vehicle weight and size control system. Journal of Physics Conference Series. 2021, vol. 1753, no. 1, article 012063. DOI: 10.1088/1742-6596/1753/1/012063.

36. Safiullin R.N., Kerimov M.A. Intellectual onboard transport systems in road transport. Monograph. M.-Berlin: Direct Media, 2017, p. 35.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.