Determination of internal structure of geomedium using ABCD matrices and shadow method

The article briefly reviews and analyzes the methods to determine internal structure of a geomedium, such as X-ray tomography, acoustic microscopy and laser ultrasonic structural imaging. The relevance of the acoustic shadowing of the internal structure of a geomedium is justified. The method to solve this task with regard to diffraction, phase-velocity dispersion and frequency-dependent attenuation is proposed. The mechanism of the acoustic wave propagation in a heterogeneous medium is examined. The theory of modeling of acoustic signal propagation in such media is described. It is analyzed how diffraction phenomena influence the signal, and the method of including them in modeling using ABCD matrices is presented. The analysis of the phase-velocity dispersion and frequency-dependent attenuation, as well as their connection with the Kramers–Kronig relations is performed, and the method to include these characteristics in modeling is described. A special layered specimen with embedded heterogeneity is manufactured for testing using the proposed method. The restored profile of the specimen is presented with characterization of each layer. The comparison of the results with the conventionally obtained data proves applicability of the developed method to determining internal structure of geomedia in the shadow mode.

Keywords: laser optoacoustic method, ultrasonic control, layered media, nondestructive testing, modeling methods, ABCD matrices, structural imaging, acoustic pulse propagation.
For citation:

Pashkin A. I., Vinnikov V. A., Cherepetskaya E. B. Determination of internal structure of geomedium using ABCD matrices and shadow method. MIAB. Mining Inf. Anal. Bull. 2022;(8):14-26. [In Russ]. DOI: 10.25018/0236_1493_2022_8_0_14.

Acknowledgements:

The study was supported by the Russian Foundation for Basic Research, Project No. 20-35-90044.

Issue number: 8
Year: 2022
Page number: 14-26
ISBN: 0236-1493
UDK: 550.3
DOI: 10.25018/0236_1493_2022_8_0_14
Article receipt date: 23.06.2022
Date of review receipt: 28.06.2022
Date of the editorial board′s decision on the article′s publishing: 10.07.2022
About authors:

A.I. Pashkin1, Engineer, e-mail: Alexandrill@ya.ru, ORCID ID: 0000-0002-8774-5982,
V.A. Vinnikov1, Dr. Sci. (Phys. Mathem.), Assistant Professor, Head of Chair, e-mail: evgeny.vinnikov@gmail.com,
E.B. Cherepetskaya1, Dr. Sci. (Eng.), Professor, e-mail: echerepetskaya@mail.ru, ORCID ID: 0000-0002-9642-2149,
1 National University of Science and Technology «MISiS», 119049, Moscow, Russia.

 

For contacts:

A.I. Pashkin, e-mail: Alexandrill@ya.ru.

Bibliography:

1. Eremenko N. M., Muravieva Y. A., Application of X-ray microtomography methods for determining porosity in well cores. Neftegazovaya Geologiya. Teoriya I Praktika. 2012, no. 3, pp. 1—12. [In Russ].

2. Galkin S. V., Efimov A. A., Krivoschekov S. N., Savitskiy Y. V., Cherepanov S. S. Application of the X-ray tomography method in petrophysical studies of oil and gas field cores. Russian Geology and Geophysics. 2015, no. 5, pp. 995—1007. [In Russ]. DOI: 10.15372/GiG20150509.

3. Drobchack A. N., Duganov G. A., Duchkov A. A., Cuper K. A. Acoustic measurements and X-ray tomography of sand samples containing xenon hydrate. Russian Journal of Geophysical Technologies. 2019, no. 4, pp. 17—23. [In Russ]. DOI: 10.18303/2619-1563-2019-4-17.

4. Galkin S. V., Kolichev I. Y., Savitskiy Y. V. Possibilities of studying the hydrophobization of reservoirs by complexing using the methods of X-ray tomography of the core and electrical logging. Geology and Geophysics. 2019, vol. 60, no. 10, pp. 1496—1507. [In Russ]. DOI: 10.15372/GiG2019094.

5. Zhu J. B., Zhou T., Liao Z. Y., Sun L., Chen R. Replication of internal defects and investigation of mechanical and fracture behavior of rock using 3D printing and 3D numerical methods in combination with X-ray computerized tomography. International Journal of Rock Mechanics and Mining Sciences. 2018, vol. 106, pp. 198—212. DOI: 10.1016/j.ijrmms.2018.04.022.

6. Galunin A. A., Stepanov G. D., Bezrukov V. I., Svoboda P., Kravcov A. N. Research of the internal structure of diabase samples by optical-acoustic and computer x-ray tomography. MIAB. Mining Inf. Anal. Bull. 2021, no. 4-1, pp. 16—25. [In Russ]. DOI: 10.25018/0236_1493_2021_ 41_0_16.

7. Guntoro P. I., Ghorbani Y., Koch P.-H., Rosenkran J. X-ray microcomputed tomography (µct) for mineral characterization: a review of data analysis methods. Minerals. 2019, vol. 9, no. 3, p. 183. DOI: 10.3390/min9030183.

8. Martínez-Martínez J., Fusi N., Galiana-Merino J. J., Benavente D., Crosta G. B. Ultrasonic and X-ray computed tomography characterization of progressive fracture damage in low-porous carbonate rocks. Engineering Geology. 2016, vol. 200, pp. 47–57. DOI: 10.1016/j. enggeo.2015.11.009.

9. Tai-Ming He, Qi Zhao, Johnson Ha, Kaiwen Xia, Grasselli G. Understanding progressive rock failure and associated seismicity using ultrasonic tomography and numerical simulation. Tunnelling and Underground Space Technology. 2018, vol. 81, pp. 26—34. DOI: 10.1016/j. tust.2018.06.022.

10. Rodriguez-Rey A., Briggs G. A. D., Field T. A., Montoto M. Acoustic microscopy of rocks. Journal of Microscopy. 1990, vol. 160, no. 1, pp. 21—29. DOI: 10.1111/j.1365-2818.1990. tb03044.x.

11. Prasad M. Mapping impedance microstructures in rocks with acoustic microscopy. The Leading Edge. 2001, vol. 20, no. 2, p. 172. DOI: 10.1190/1.1438902.

12. Simpson J., van Wijk K., Adam L., Smith C. Laser ultrasonic measurements to estimate the elastic properties of rock samples under in situ conditions. Review of Scientific Instruments. 2019, vol. 90, no. 11, article 114503, DOI: 10.1063/1.5120078.

13. Kravtsov A., Ivanov P. N., Malinnikova O. N., Cherepetskaya Е. B., Gapeev A. A. Laser– ultrasonic spectroscopy of the Pechora basin coal microstructure. MIAB. Mining Inf. Anal. Bull. 2019, no. 6, pp. 56—65. [In Russ]. DOI: 10.25018/0236-1493-2019-06-0-56-65.

14. Bychkov A. S., Cherepetskaya E. B., Karabutov A. A., Makarov V. A. Improvement of image spatial resolution in optoacoustic tomography with the use of a confocal array. Acousical Physics. 2018, vol. 64, no. 1, pp. 77—82. DOI: 10.1134/S1063771018010037.

15. Pashkin A. I., Vinnikov V. A. Modeling propagation of laser–ultrasonic probing pulse in stratified medium by the method of ABCD matrices. MIAB. Mining Inf. Anal. Bull. 2020, no. 6, pp. 140–150. [In Russ]. DOI: 10.25018/0236-1493-2020-6-0-140-150.

16. Treeby B. E. Acoustic attenuation compensation in photoacoustic tomography using time-variant filtering. Journal of Biomedical Optics. 2013, vol. 18, no. 3, article 036008. DOI: 10.1117/1.JBO.18.3.036008.

17. Karabutov A. A., Podimova N. B., Sokolovskaya Yu. G. Local kramers-kronig relations for the attenuation coefficient and phase velocity of longitudinal ultrasonic waves in polymer composites. Akusticheskij Zhurnal. 2019, vol. 65, no. 2, pp. 182—189. [In Russ]. DOI: 10.1134/ S0320791919020060.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.