Methodological framework for implicit modeling of solid mineral deposits in automated design

The conventional delineation of three-dimensional geological boundaries largely depends on the time-consuming manual digitizing process. This modeling method can be best described as the modeling of a surface as the complex geometry of an ore body with regard to cutoff grades is constructed by means of triangulation. However, with the advent of fast 3D interpolation, construction of geological surfaces using the functions of volume became an efficient alternative to the explicit surface modeling. This article discusses the application of FastRBF™ and statistical analysis of geological data in 3D implicit modeling of solid mineral deposits. The stages of the geological model of a solid mineral deposit and the features of the numerical modeling using FastRBF™ are described. The implicit modeling allows assessment of the condition of solid mineral deposits, enables standardized digitizing when designing in mining and geology software systems, and provides more complete knowledge about the quality and quantity of a georesource potential of a mine. The high productivity of the implicit modeling is illustrated. It is also proved that the implicit modeling using FastRBF™ is a breakthrough in the interpolation of RBF. Using these functions, designers can solve problems connected with interpolation and smoothing of large data arrays in mining and geology software systems.

Keywords: mine, 3D geomodeling, geotechnical systems, implicit modeling, implication, statistical analysis, 3D mineral deposit models, data interpolation, indicator kriging, radial basis functions, fast radial basis functions, FastRBF™.
For citation:

Stadnik D. A., Stadnik N. M., Zhilin A. G., Lopushnyak E. V. Methodological framework for implicit modeling of solid mineral deposits in automated design. MIAB. Mining Inf. Anal. Bull. 2023;(5-1):185-197. [In Russ]. DOI: 10.25018/0236_1493_2023_51_0_185.

Acknowledgements:
Issue number: 5
Year: 2023
Page number: 185-197
ISBN: 0236-1493
UDK: 622.272; 622.45
DOI: 10.25018/0236_1493_2023_51_0_185
Article receipt date: 27.02.2023
Date of review receipt: 29.03.2023
Date of the editorial board′s decision on the article′s publishing: 10.04.2023
About authors:

D.A. Stadnik1, Dr. Sci. (Eng.), Professor, e-mail: sined777@yandex.ru, 
N.M. Stadnik1, Cand. Sci. (Eng.), Assistant Professor, e-mail: Kun17@yandex.ru,
A.G. Zhilin, Technical Director, Green Solutions, 050006, Almaty, Republic of Kazakhstan, e-mail: zhilin.alexey.84@mail.ru,
E.V. Lopushnyak1, Student, e-mail: lopushnyack.c@yandex.ru,
1 North Caucasian Institute of Mining and Metallurgy (State Technological University), 362021, Vladikavkaz, Russia.

 

For contacts:

D.A. Stadnik, e-mail: sined777@yandex.ru.

Bibliography:

1. Kopylov А. S., Dzhioeva А. К, Kondratyev Yur. I. An integrated approach to the development of the raw material base of the mining region with the use of resource-reproducing technologies. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 2, pp. 228—239. [In Russ]. DOI: 10.21177/1998-4502-2022-14-2-228-239.

2. Kvachev V. N., Leontieva E. V., Khaustov V. V., Kozub A. V. Kushnerchuk V. V. Main Trends in Digitalization of Hydrogeological Processes at Andrei Varichev Mikhailovsky GOK. Russian Mining Industry. 2020, no. 3, pp. 91—97. [In Russ]. DOI: 10.30686/1609-9192-20203-91-97.

3. Anh T. V., Klyuev R. V., Bosikov I. I., Tsidaev B. S. Estimation of the reliability of the ventilation control system at the mining sites. Sustainable Development of Mountain Territories. 2018, vol. 10, no. 1, pp. 117—124. [In Russ]. DOI: 10.21177/1998-4502-2018-10-1-117-124.

4. Golik V. I., Dmitrak Yur. V., Gabaraev О. Z., Stadnik D. А. Reserve for improving the efficiency of the development of low-power ore deposits. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2020, no. 9, vol. 331, pp. 63—69. [In Russ]. DOI: 10.18799/24131830/2020/9/2805.

5. Temkin I. O., Klebanov D. A., Deryabin S. A., Konov I. S. Construction of intelligent geoinformation system for a mine using forecasting analytics techniques. MIAB. Mining Inf. Anal. Bull. 2020, no. 3, pp. 114—125. [In Russ]. DOI: 10.25018/0236-1493-2020-3-0-114-125.

6. Kurtsev B. V., Zhdanov A. V., Varcheba A. A. The effectiveness of the use of integrated GIS at the enterprise. Nedropolzovanie — XXI vek. 2011, vol. 4, pp. 38—40. [In Russ].

7. Kaputin Yu. E. Modelirovanie mestorozhdeniy i otsenka mineral'nykh resursov (s ispol'zovaniem STUDII 3): uchebnyy kurs [Modeling of deposits and evaluation of mineral resources (using STUDIO 3): textbook course], Saint-Petersburg, Gornyy Institut, 2007, 188 p.

8. Stadnik D. A., Gabaraev O. Z., Stadnik N. M., Tedeev A. M. Improvement of methodical framework for autonomous scheduling of mining operations during underground mine design and planning. MIAB. Mining Inf. Anal. Bull. 2020, no. 11-1, pp. 189—201. [In Russ]. DOI: 10.25018/0236-1493-2020-111-0-189-201.

9. Noone G. What does the future hold for automation in the mining industry? World Mining Frontiers. 2019, vol. 2, pp. 18—21.

10. Stadnik D. A., Gabaraev O. Z., Stadnik N. M., Grigoryan K. L. Digital twin quality improvement for mines through standardization of attribute content for 3D GIS-based geotechnical modeling. MIAB. Mining Inf. Anal. Bull. 2020, no. 11-1, pp. 202—212. [In Russ]. DOI: 10.25018/0236-1493-2020-111-0-202-212.

11. Klyuev R. V.,. Bosikov I. I., Egorova E. V., Gavrina О. А. Assessment of mining-geological and mining conditions of the Severny quarry using mathematical models. Sustainable Development of Mountain Territories. 2020, no. 3, pp. 418—427. [In Russ].

12. Bosikov I. I., Klyuev R. V., Khetagurov V. N. Analysis and comprehensive evaluation of gas-dynamic processes in coal mines using the methods of the theory of probability and math statistics analysis. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 3, pp. 461—467. [In Russ]. DOI: 10.21177/1998-4502-2022-14-3-461-467.

13. Balovtsev S. V., Skopintseva O. V. Hazard and vulnerability criteria in the rank structure of aerological risks in coal mines. MIAB. Mining Inf. Anal. Bull. 2022, no. 10, pp. 153—165. [In Russ] DOI: 10.25018/0236_1493_2022_10_0_153.

14. Cowan E. J., Beatson R. K., Ross H. J., Fright W. R., McLennan T. J., Evans T. R., Carr J. C., Lane R. G., Bright D. V., Gillman A. J., Oshust P. A., Titley M. Practical implicit geological modelling. AusIMM 5th International Mining Geology Conference. 2003, vol. 8/2003, pp. 89—99.

15. Zhu C., Yuan Y., Yuan C., Liu F., Chen Z., Wang S. Study on the structural forms of the key strata in the overburden of a stope during periodic weighting and the reasonable working resistance of the support. Energy Science & Engineering. 2020, vol. 8, no. 5, pp. 2599—2620. DOI: 10.1002/ese3.688.

16. Stadnik D. А., Stadnik N. М., Lopushnyac E. V. To the question of developing methodological bases of information modeling of mining enterprises. News of the Tula state university. Sciences of Earth. 2022, no. 3, pp. 187—200. [In Russ]

17. Wang G., Li R., Carranza E. J. M., Zhang S., Yan C., Zhu Y., Qu J., Hong D., Song Y., Han J., Ma Z., Zhang H., Yang F. 3D geological modeling for prediction of subsurface Mo targets in the Luanchuan district, China. Ore Geology Reviews. 2015, vol. 71, pp. 592—610. DOI: 10.1016/j.oregeorev.2015.03.002.

18. Vostrikov A. V., Prokofeva E. N., Gribanov I. V., Goncharenko S. N. Analytical modeling for the modern mining industry. Eurasian Mining. 2019, no. 2, pp. 30—35. DOI: 10.17580/ em.2019.02.07.

19. Uyan M., Dursun A. E. Determination and modeling of lignite reserve using geostatistical analysis and GIS. Arabian Journal of Geosciences. 2021, vol. 14, no. 4, article 312. DOI: 10.1007/s12517-021-06633-2.

20. Torres C. E., Barba L. A. Fast radial basis function interpolation with Gaussians by localization and iteration. Journal of Computational Physics. 2009, vol. 228, no. 14, pp. 4976—4999. DOI: 10.1016/j.jcp.2009.03.007.

21. Zhong D.-Y., Wang L.-G., Jia M.-T., Bi L., Zhang J. Orebody modeling from non-parallel cross sections with geometry constraints. Minerals. 2019, vol. 9, no. 4, article 229. DOI: 10.3390/min9040229.

22. Wen Z., Xing E., Shi S., Jiang Y. Overlying strata structural modeling and support applicability analysis for large mining-height stopes. Journal of Loss Prevention in the Process Industries. 2019, vol. 57, pp. 94—100. DOI: 10.1016/j.jlp.2018.11.006.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.