Methodological issues in determination of initial parameters for modeling deformation of rock salt as a polycrystalline discrete medium

The article presents the methodological issues in determination of initial data for modeling deformation and fracture of rock salt using the finite-discrete element method. Some recommendations for the formation of a synthetic macrostructure of rock salt based on statistical processing of sizes and shapes of individual structural elements using the Voronoi tessellation method are presented. An approach to finite element modeling on the ground of the generated synthetic salt macrostructure is described. The obtained numerical model is used to predict the stress–strain behavior of rocks and to study the nature of rock failure. The paper presents a method for determining mechanical characteristics of individual rock salt crystals. For this purpose, the laboratory tests are carried out, which allow obtaining the values of strength of crystals. Knowing these values, it is possible to describe the behavior of structural elements under different loading conditions. This can enable selecting appropriate deformation models for the further analysis. The present authors obtained the averaged values of strength of halite crystals corresponding to rocks of the Verkhnekamsk deposit. The proposed integrated approach to the description of structural features of rock salt allows studying such rocks using virtual methods, which saves time and money by eliminating the need for expensive equipment and physical tests. This opens new opportunities for investigating and analyzing properties of rock salt toward the practical application of the knowledge obtained.

Keywords: Voronoi tessellation, polycrystalline structures, discrete element method, mathematical modeling, salt rocks, rock salt, Weibull distribution, spherical indenter loading.
For citation:

Karasev M. A., Petrushin V. V. Methodological issues in determination of initial parameters for modeling deformation of rock salt as a polycrystalline discrete medium. MIAB. Mining Inf. Anal. Bull. 2024;(9):47-64. DOI: 10.25018/0236_1493_2024_9_0_47.

Acknowledgements:
Issue number: 9
Year: 2024
Page number: 47-64
ISBN: 0236-1493
UDK: 622.02:593.3
DOI: 10.25018/0236_1493_2024_9_0_47
Article receipt date: 01.04.2024
Date of review receipt: 06.06.2024
Date of the editorial board′s decision on the article′s publishing: 10.08.2024
About authors:

M.A. Karasev1, Dr. Sci. (Eng.), Assistant Professor, e-mail: karasevma@gmail.com, ORCID ID: 0000-0001-8939-0807,
V.V. Petrushin1, Graduate Student, e-mail: vlad.petrushin.93@mail.ru, ORCID ID: 0000-0001-7743-864X,
1 Empress Catherine II Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

V.V. Petrushin, e-mail: vlad.petrushin.93@mail.ru.

Bibliography:

1. Liu W., Zhang Z., Chen J., Fan J., Jiang D., Jjk D., Li Y. Physical simulation of construction and control of two butted-well horizontal cavern energy storage using large molded rock salt specimens. Energy. 2019, vol. 185, pp. 682—694. DOI: 10.1016/j.energy.2019.07.014.

2. Hunsche U., Hampel A. Rock salt — the mechanical properties of the host rock material for a radioactive waste repository. Engineering Geology. 1999, vol. 59, no. 3-4, pp. 271—291. DOI: 10.1016/ s0013-7952(99)00011-3.

3. Urai J. L., Spiers C. J. The effect of grain boundary water on deformation mechanisms and rheology of rocksalt during long-term deformation. Proceedings of the 6th Conference on the Mechanical Behavior of Salt «SALTMECH6» — the Mechanical Behavior of Salt — Understanding of THMC Processes in Salt. 2007. DOI: 10.1201/9781315106502-17.

4. Bérest С., Brouard B., Djakeun-Djizanne H., Hévin G. Thermomechanical effects of a rapid depressurization in a gas cavern. Acta Geotechnica. 2014, vol. 9, no. 1, pp. 181—186. DOI: 10.1007/ s11440-013-0233-8.

5. Van Tendeloo G., Lebedev O. I., Amelinckx S. Atomic and microstructure of CMR materials. Journal of Magnetism and Magnetic Materials. 2000, vol. 211, no. 1, pp. 73—83. DOI: 10.1016/S03048853(99)00716-7.

6. Tan Q., You L., Kang Y., Zhang X., Meng S. Changes in pore structures and porosity-permeability evolution of saline-lacustrine carbonate reservoir triggered by fresh water-rock reaction. Journal of Hydrology. 2020, vol. 580, pp. 1—34. DOI: 10.1016/j.jhydrol.2019.124375.

7. Jung S. K., Gwon H., Hong J., Park K. Y., Seo D. H., Kim H., Hyun J., Yang W., Kang K. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Advanced Energy Materials. 2014, vol. 4, no. 1, pp. 1—7. DOI: 10.1002/aenm.201300787.

8. Meldrum F. C., Cölfen H. Controlling mineral morphologies and structures in biological and synthetic systems. Chemical Reviews. 2008, vol. 108, no. 11, pp. 4332—4432. DOI: 10.1021/cr8002856.

9. Vandeginste V., Ji Y., Buysschaert F., Anoyatis G. Mineralogy, microstructures and geomechanics of rock salt for underground gas storage. Deep Underground Science and Engineering. 2023, vol. 2, no. 2, pp. 129—147. DOI: 10.1002/dug2.12039.

10. Tunar Özcan N. Thermal effect on the geo-engineering characteristics of a rock salt. PLoS One. 2023, vol. 18, no. 3. DOI: 10.1371/journal.pone.0283435.

11. Liang K., Xie L. Z., He B., Zhao С., Zhang Y., Hu W. Z. Effects of grain size distributions on the macro-mechanical behavior of rock salt using micro-based multiscale methods. International Journal of Rock Mechanics and Mining Sciences. 2021, vol. 138. DOI: 10.1016/j.ijrmms.2020.104592.

12. Rybak J., Khayrutdinov M. M., Kuziev D. A., Kongar-Syuryun C. B., Babyr N. V. Prediction of the geomechanical state of the rock mass when mining salt deposits with stowing. Journal of Mining Institute. 2022, vol. 253, pp. 61—70. [In Russ]. DOI: 10.31897/PMI.2022.2.

13. Coates G. F., Hulse C. A. A comparison of four methods of size analysis of fine-grained sediments. New Zealand Journal of Geology and Geophysics. 1985, vol. 28, no. 2, pp. 369—380. DOI: 10.1080/00288306.1985.10422234.

14. Senseny С. E., Hansen F. D., Russell J. E., Carter N. L., Handin J. W. Mechanical behaviour of rock salt: Phenomenology and micromechanisms. International Journal of Rock Mechanics and Mining Sciences. 1992, vol. 29, no. 4, pp. 363—378. DOI: 10.1016/0148-9062(92)90513-Y.

15. Demenkov P. A., Romanova Е. L., Kotikov D. A. Stress–strain analysis of vertical shaft lining and adjacent rock mass under conditions of irregular contour. MIAB. Mining Inf. Anal. Bull. 2023, no. 11, pp. 33—48. [In Russ]. DOI: 10.25018/0236_1493_2023_11_0_33.

16. Belyakov N. A., Morozov K. V., Emelyanov I. A. Data processing in full-scale in-situ stress testing by overcoring. Gornyi Zhurnal. 2023, no. 5, pp. 89—96. [In Russ]. DOI 10.17580/gzh.2023.05.13.

17. Zatsepin M. A., Gospodarikov A. P. Approaches to numerical modeling of dynamic rock fracture in drilling and blasting. Gornyi Zhurnal. 2023, no. 9, pp. 21—27. [In Russ]. DOI: 10.17580/gzh. 2023.09.03.

18. Gospodarikov A., Revin I., Morozov K. Composite model of seismic monitoring data analysis during mining operations on the example of the Kukisvumchorrskoye deposit of AO Apatit. Journal of Mining Institute. 2023, vol. 262, pp. 571—580. [In Russ]. DOI: 10.31897/PMI.2023.9.

19. Coakley J., Reed R. C., Warwick J. L.W., Rahman K. M., Dye D., Zhang F., Levine L. E., Allen A. J., Stoudt M. R., Lindwall G., Eric A., Baither D. Three-dimensional phase-field simulations of coarsening kinetics of  particles in binary Ni-Al alloys. Acta Materialia. 2013, vol. 61, no. 6.

20. Ditler E., Luber S. Vibrational spectroscopy by means of first-principles molecular dynamics simulations. Wiley Interdisciplinary Reviews: Computational Molecular Science. 2022, vol. 12, no. 5, pp. 1—29. DOI: 10.1002/wcms.1605.

21. Ehlers W., Häberle K. Interfacial mass transfer during gas—Liquid phase change in deformable porous media with heat transfer. Transport in Porous Media. 2016, vol. 114, no. 2. DOI: 10.1007/ s11242-016-0674-2.

22. Mulyukova E., Bercovici D. On the co-evolution of dislocations and grains in deforming rocks. Physics of the Earth and Planetary Interiors. 2022, vol. 328. DOI: 10.1016/j.pepi.2022.106874.

23. Verbilo P. E., Vilner M. A. Study of the jointed rock mass uniaxial compression strength anisotropy and scale effect. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 47—59. [In Russ]. DOI: 10.25 018/0236_1493_2022_62_0_47.

24. Wang J., Zhang Q., Song Z., Feng S., Zhang Y. Nonlinear creep model of salt rock used for displacement prediction of salt cavern gas storage. Journal of Energy Storage. 2022, vol. 48. DOI: 10.1016/j.est.2021.103951.

25. Zhao K., Yang C., Ma H., Daemen J. J. K. A creep-fatigue model of rock salt and its application to the deformation analysis of CAES salt caverns. Computers and Geotechnics. 2023, vol. 156, pp. 255—272. DOI: 10.1016/j.compgeo.2023.105311.

26. Marketos G., Spiers C. J., Govers R. Impact of rock salt creep law choice on subsidence calculations for hydrocarbon reservoirs overlain by evaporite caprocks. Journal of Geophysical Research: Solid Earth. 2016, vol. 121, no. 6, pp. 4249—4267. DOI: 10.1002/2016JB012892.

27. Munjiza A. The combined finite-discrete element method. The Combined Finite-Discrete Element Method. 2004. 331 p. DOI: 10.1002/0470020180.

28. Potyondy D. O., Cundall С. A. A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences. 2004, vol. 41, no. 8 spec. iss, pp. 1330—1364. DOI: 10.1016/j. ijrmms.2004.09.011.

29. Khaledi K., Brepols T., Reese S. Numerical simulation of periodic cracking mechanism in microscopic surface films during roll bonding processes. Materwiss Werksttech. 2019, vol. 50, no. 8. DOI: 10.1002/mawe.201900035.

30. Korshunov V. A., Kartashov Y. M., Kozlov V. A. Determination of indices of strength certificate оf rocks using the method of specimens failure with spherical indentors. Journal of Mining Institute. 2010, vol. 185, pp. 41. [In Russ].

31. Karasev M. A., Petrushin V. V., Rysin A. I. The hybrid finite/discrete element method in description of macrostructural behavior of salt rocks. MIAB. Mining Inf. Anal. Bull. 2023, no. 4, pp. 48—66. [In Russ]. DOI: 10.25018/0236_1493_2023_4_0_48.

32. Quey R., Dawson P. R., Barbe F. Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing. Computer Methods in Applied Mechanics and Engineering. 2011, vol. 200, no. 17-20, pp. 1729—1745. DOI: 10.1016/j.cma.2011.01.002.

33. Wong T. F., Wong R. H. C., Chau K. T., Tang C. A. Microcrack statistics, Weibull distribution and micromechanical modeling of compressive failure in rock. Mechanics of Materials. 2006, vol. 38, no. 7, pp. 665—681. DOI: 10.1016/j.mechmat.2005.12.002.

34. Yang B., Xue L., Wang M. Evolution of the shape parameter in the Weibull distribution for brittle rocks under uniaxial compression. Arabian Journal of Geosciences. 2018, vol. 11, no. 12, pp. 1—7. DOI: 10.1007/s12517-018-3689-x.

35. Zherlygina E. S., Mustafin M. G., Vasiliev B. Y., Nikolaev R. V. Determination procedure of linear parameters of movement processes from digital terrain models in Khibiny apatite-nepheline ore mining. Gornyi Zhurnal. 2023, no. 5, pp. 97—103. [In Russ]. DOI: 10.17580/gzh.2023.05.14.

36. Vasilev B. Yu., Mustafin M.G. Digital relief models of open-pit mining facilities: Analysis and optimization. MIAB. Mining Inf. Anal. Bull. 2023, no. 9, pp. 141—159. [In Russ]. DOI: 10. 25018/ 0236_1493_2023_9_0_141.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.