The method of using multicomponent strain sensors for the primary assessment and monitoring of the stress-strain state of a rock mass

Ensuring the safe condition of mining operations in high-impact deposits is based on the use of various seismic monitoring systems, which currently do not provide reliable results. To increase the reliability of the forecast of dynamic manifestations of mountain pressure, it is proposed to use integrated monitoring systems. The article discusses the main provisions of the methodology for using multicomponent strain sensors for the initial assessment and monitoring of the stress-strain state of a rock mass. The methods include hardware such as multicomponent strain sensors, autonomous control systems, drilling and auxiliary equipment for the initial assessment of stress-strain state and the arrangement of deformation monitoring stations, software for conducting observations and processing the results, preliminary criteria for the occurrence of dangerous conditions and methodological recommendations for carrying out relevant work. Threshold values of deformations on autonomous control complexes in combination with threshold data of other types of monitoring must be certified by local control methods and, if confirmed, necessitates technical measures to bring the array to a safe state. Examples of some results of joint deformation, seismic and technological monitoring when assessing the stress-strain state of the studied massif are given.

Keywords: Stress-strain state, methods of end unloading, multicomponent strain gauges, deformation monitoring systems, autonomous monitoring complex, seismic activity, forecast, dynamic manifestations.
For citation:

Morozov K. V., Demekhin D. N., Bahtin E. V. The method of using multicomponent strain sensors for the primary assessment and monitoring of the stress-strain state of a rock mass. MIAB. Mining Inf. Anal. Bull. 2024;(11−1):25—38. [In Russ]. DOI: 10.25018/0236_1493_2024_111_0_25.

Acknowledgements:
Issue number: 11
Year: 2024
Page number: 25-38
ISBN: 0236-1493
UDK: 622.502.057
DOI: 10.25018/0236_1493_2024_111_0_25
Article receipt date: 17.06.2024
Date of review receipt: 06.10.2024
Date of the editorial board′s decision on the article′s publishing: 10.10.2024
About authors:

Morozov K. V.1, Head of the Laboratory of Geomechanics, Scientific Center for Geomechanics and Mining, е-mail: morozov_kv@pers.spmi.ru, https://orcid.org/ 0000−0003−3597−756X, Scopus Author ID: 57196008021;
Demekhin D. N.1, Senior Researcher, Laboratory of Geomechanics, Scientific Center for Geomechanics and Mining, е-mail: demyokhin_dn@pers.spmi.ru, https://orcid. org/0000−0001−7958−2290, Author ID: 56462968700;
Bahtin E. V.1, Leading Engineer, Laboratory of Geomechanics, Scientific Center for Geomechanics and Mining, е-mail: bahtin_ev@pers.spmi.ru, Author ID: 57211915520;
1 Empress Catherine II Saint Petersburg Mining University, 2, 21st Line, St Petersburg 199106, Russia.

 

For contacts:

Morozov K. V., е-mail: morozov_kv@pers.spmi.ru.

Bibliography:

1. Zubov V. P., Sokol D. G. Technologies for intensive development of potash seams using long working faces at great depths: current problems, directions for improvement. Proceedings of the Mining Institute. 2023, vol. 264, pp. 874–885. [In Russ].

2. Evseev A. V., Vasilyeva E. L. Taking into account the influence of the installation location of control points when assessing the stability of inter-chamber pillars based on the speed of horizontal convergence of the cleaning chambers. Mountain echo. 2022, no. 3 (88), pp. 15–19. [In Russ]. DOI: 10.7242/echo.2022.3.3.

3. Baryakh A. A., Devyatkov S. Yu., Denkevich E. T. Mathematical modeling of the development of the displacement process during the mining of potash ores using longwall faces. Notes of the Mining Institute. 2023, vol. 259, pp. 13–20. [In Russ]. DOI: 10.31897/PMI.2023.11.

4. Pankov I. L., Anikin V. V., Beltyukov N. L., Evseev A. V., Kuzminykh V. S., Lomakin I. S., Morozov I. A., Toksarov V. N., Udartsev A. A. Study of deformation and destruction of salt rocks to develop methods for geomechanical assessment of the stability of load-bearing elements of a chamber system for the development of potash deposits. Bulletin of the Perm Federal Research Center. 2022, no. 3, pp. 14–24. [In Russ]. https://doi.org/10. 7242/2658−705X/2022.3.2/.

5. Rasskazov I. Yu. Research of rock bump hazard on underground mines of the Far East and Transbaikalia. Problems of subsoil use. 2018, no. 3(18), pp. 128–139. [In Russ].

6. Li C. C., Mikula P., Simser B., Hebblewhite B., Joughin W. C. Discussions on rockburst and dynamic ground support in deep mines. Journal of Rock Mechanics and Geotechnical Engineering. 2019, vol. 11(5), pp. 1110–1118. DOI: 10.1016/j.jrmge.2019.06.001.

7. Trofimov V., Kirkin A. P., Rumyantsev A. E., Kolganov A. V. The use of deep borehole imaging data in reconstruction of active stress mode at a polymetallic deposit of intrusive genesis. Gornyi zhurnal. 2024, no. 1, pp. 68–74. [In Russ]. DOI: 10.17580/gzh.2024.01.11.

8. Rasskazov I. Yu., Batugin A. S., Fedotova Yu. V., Potapchuk M. I. The proneness assessment of a mineral deposit to tectonic rockburst: A case-study of Yuzhnoe deposit. Gornyi Zhurnal. 2023, no. 1, pp. 74–78. [In Russ]. DOI: 10.17580/gzh.2023.01.12.

9. Zatsepin M. A., Gospodarikov A. P. On some approaches to numerical modeling of the dynamic destruction of rock masses during drilling and blasting operations. Mining Journal. 2023, no. 9, pp. 21–27. [In Russ]. DOI: 10.17580/gzh.2023.09.03.

10. Noskov V. A., Tsirel S. V., Korchak P. A. Investigation of the impact of geodynamic risk on the financial and economic activities of mining enterprises. Rock Mechanics for Natural Resources and Infrastructure Development — Proceedings of the 14th International Congress on Rock Mechanics and Rock Engineering, ISRM 2019, 2020, pp. 330–335.

11. Adushkin V. V., Oparin V. N. From the phenomenon of alternating reaction of rocks to dynamic influences — to pendulum-type waves in stressed geomedia. Part II. FTPRPI. 2013, no. 2, pp. 3–46. [In Russ].

12. Yamshchikov V. S. Methods and means of research and control of rocks and processes. Moscow, Nedra, 1982, 296 p. [In Russ].

13. Morozov K. V., Demyokhin D. N., Bakhtin E. V. Multicomponent strain gauges for assessing the stress-strain state of rock masses. MIAB. Mining informational and analytical bulletin. 2022, no. 6−2, pp. 80–97. [In Russ]. DOI: 10.25018/ 0236_1493_2022_62_0_80.

14. Belyakov N. A., Emelyanov I. A. Development of the approach to processing the results of stress state measurements by the ring unloading method. News of Tula State University. 2022, no. 2, pp. 192–207. [In Russ]. DOI: 10.46689/2218−5194−2022−2-1−192−207.

15. Protosenya A. G., Belyakov N. A., Bouslova M. A. Modelling of the stress-strain state of block rock mass of ore deposits during development by caving mining systems. Journal of mining institute. 2023, vol. 262, pp. 619–627. [In Russ].

16. Morozov K., Shabarov A., Kuranov A., Belyakov N., Zuyev B., et al. Geodynamic monitoring and its maintenance using modeling by numerical and similar materials methods. E3S Web Conf. 1st International Scientific Conference «Problems in Geomechanics of Highly Compressed Rock and Rock Massifs». 2019, vol. 129, article 01012, pp. 1–12. DOI: 10.1051/ e3sconf/201912901012.

17. Ulusay R., Hudson J. The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974−2006. Ankara, Turkey: ISRM Turkish National Group, 2007, 628 p.

18. Daniel A. Analysis of overcoring rock stress measurements preformed using the CSIRO HI. International Progress Report IPR-04−06. Sweden, 2003, 266 p.

19. RF Patent No. 2763565 07/07/2021. Morozov K. V., Bakhtin E. V., Demyokhin D. N., Bakumenko S. V., Yakovlev N. A. A device for assessing the stress-strain state of a rock mass. 2021, bull. no. 1. [In Russ].

20. Eremenko A. A., Konurin A. I., Shtirts V. A., Prib V. V. Identification of zones of increased burrow pressure in an explosive iron ore deposit. Mining Journal. 2020, no. 1, pp. 78–81. [In Russ]. DOI: 10.17580/gzh.2020.01.15.

21. Kotikov D. A. Shabarov A. N. Tsirel S. V. Connecting seismic event distribution and tectonic structure of rock mass. Mining Journal. 2020, no. 1, pp. 28–32. [In Russ]. DOI: 10.17580/gzh.2020.01.05.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.