Research procedure for coal dust aerodynamics in long roadways

This article addresses the urgent problem of fire prevention and safety of mining practices connected with production, handling, processing and storage of coal raw material. The studies focus on fire hazardous and explosive airborne dust concentrations and depositions on process equipment and in hard-to-reach places. The article describes selection, validation and test of a research procedure for aerodynamic properties of coal dust in long horizontal and inclined roadways. The practical part of the procedure is based on the actual test data obtained using the aerodynamic test bench designed by the authors. The aerodynamic modeling and design of coal dust patterns in long horizontal and inclined roadways are implemented in ANSYS Fluent. Testing of the procedure showed a good agreement between the experimental results and the author’s mathematical model data. The same output was obtained in the similar investigations. This means that the presented mathematical model is worth of experimental validation and improvement. The procedure described in this paper can be used to model coal dust flow and deposition during mining, handling, re-handling and storage of coal raw material, which can enable prediction of places of fire-hazardous and explosive concentrations of airborne dust. The research findings are applicable in elaboration of measures aimed at reduction or elimination of hazardous dust concentrations toward precaution and prevention of settled coal dust explosions.

Keywords: coal dust, aerodynamic properties, roadways, Rosin–Rummler equation, SST model, airborne dust, explosive dust.
For citation:

Rodionov V. A., Tsygankov V. D., Zhikharev S. Ya., Kormshchikov D. S. Research procedure for coal dust aerodynamics in long roadways. MIAB. Mining Inf. Anal. Bull. 2021;(10):69-79. [In Russ]. DOI: 10.25018/0236_1493_2021_10_0_69.

Acknowledgements:
Issue number: 10
Year: 2021
Page number: 69-79
ISBN: 0236-1493
UDK: 622.4; 622.8
DOI: 10.25018/0236_1493_2021_10_0_69
Article receipt date: 03.03.2021
Date of review receipt: 23.04.2021
Date of the editorial board′s decision on the article′s publishing: 10.09.2021
About authors:

V.A. Rodionov, Cand. Sci. (Eng.), Assistant Professor, e-mail: 79213258397@mail.ru, Scopus ID: 57202923447, https://orcid.org/0000-0003-2398-5829, Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia,
V.D. Tsygankov, Deputy commander of the Paramilitary Mine Rescue Point, Federal State Public Institution «The Directorate of the Paramilitary Mine Rescue Divisions in construction» of the Paramilitary Mine Rescue Divisions of the Ministry of the Russian Federation for Civil Defence, Emergencies and Elimination of Consequences of Natural Disasters, Saint-Petersburg, Russia,
S.Ya. Zhikharev1, Dr. Sci. (Eng.), Chief Researcher, e-mail: perevoloki55@mail.ru,
D.S. Kormshchikov1, Cand. Sci. (Eng.), Researcher, e-mail: dkormshchikov@gmail.com,
1 Mining Institute of Ural Branch, Russian Academy of Sciences, 614007, Perm, Russia.

 

For contacts:

V.A. Rodionov, e-mail: 79213258397@mail.ru.

Bibliography:

1. Romanchenko S. B., Rudenko Yu. F., Kosterenko V. N. Pylevaya dinamika v ugol'nykh shakhtakh [Dust dynamics in coal mines], Moscow, Izd-vo «Gornoe delo» OOO «Kimmeriyskiy tsentr», 2011, 256 p.

2. Rodionov V. A., Tursenev S. A., Skripnik I. L., Ksenofontov Yu. G. Investigation data on kinetics of spontaneous ignition of coal dust. Journal of Mining Institute. 2020, vol. 246, pp. 617—622. [In Russ]. DOI:10.31897/PMI.2020.6.3.

3. Sharavin E.O, Tsygankov V. D., Bel'shina Yu. N. Application of ANSYS Fluent to calculating shock wave parameters at junctions of roadways in mines.Problemy upravleniya riskami v tekhnosfere. 2018, no. 4 (48), pp. 40—48. [In Russ].

4. Rodionov V. A., Tsygankov V. D., Zhikharev S. Ya. Morphological composition of coal dust and impact on fire/explosion safety in roadways. Izvestiya Tul’skogo gosudarstvennogo universiteta, Nauki o zemle. 2020, no. 1, pp. 145—158. [In Russ].

5. Shabliy L. S., Krivtsov A. V., Kolmakova D. A. Komp'yuternoe modelirovanie tipovykh gidravlicheskikh i gazodinamicheskikh protsessov dvigateley i energeticheskikh ustanovok v ANSYS Fluent: uchebnoe posobie [Computer modeling of representative hydrodynamics and gas-dynamics processes in motors and power plants in ANSYS Fluent: Educational aid], Samara, 2017, 108 p.

6. ANSYS Fluent User’s Guide (2018) ANSYS, Inc, available at: http://ansys.fem.ir/ansys_fluent_tutorial.pdf (accessed 03.03.2021).

7. Menter F. R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal. 1994, vol. 32, no. 8, pp. 1598–1605.

8. Cundall P. A., Strack O. D. L. A discrete numerical model for granular assemblies. Geotechnique. 1979, vol. 29, pp. 47–65.

9. Tabakoff W., Wakeman T. Measured particle rebound characteristics useful for erosion prediction. ASME paper 82-GT-170. 1982.

10. Zhou Z., Hu P., Qi C., Niu T., Li M., Tian L. The influence of ventilation arrangement on the mechanism of dust distribution in woxi pithead. Shock and Vibration. 2018, vol. 2018, article 8928120. DOI: 10.1155/2018/8928120.

11. Liu X., Chang, P., Wang E., Zhang Z., Yang S. Numerical study of the respirable coal dust removal performance of a vortex ventilation system at an excavation face. Energies. 2018, vol. 11, no. 9, article 2449. DOI: 10.3390/en11092449.

12. Bruyaka V. A., Fokin V. G., Soldusova E. A., Glazunova N. A., Adeyanov I. E. Inzhenernyy analiz v ANSYS Workbench: uchebnoe posobie [Engineering analysis in ANSYS Workbench: Educational aid], Samara, Samar. gos. tekhn. un-t, 2010, 271 p.

13. Kobylkin A. S. Distribution of different-dispersion dust in mine workings depending on dust release source location. MIAB. Mining Inf. Anal. Bull. 2017, no. 6, pp. 291–302. [In Russ].

14. Korkodinov Ya. A. Overview of the k– model family for turbulence modeling. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie. 2013, no. 2 (15), pp. 5—16. [In Russ].

15. Grzegorz B., Bolesław D. Numerical calculation of the flow through a three-way coal dust separator. AIP Conference Proceedings. 2019, vol. 2078, article 020066. DOI: 10.1063/1.5092069.

16. Zheng Y., Organiscak J. A., Zhou L., Beck T. W., Rider J. P. CFD analysis on gas distribution for different scrubber redirection configurations in sump cut. Transactions. 2015, vol. 338, no. 1, pp. 423—432.

17. Wang J., Tang Y., Du H., Shang W. Development of a respirable dust mitigation system for a high longwall face at sihe colliery in China — a case study. Journal of Engineering & Technological Sciences. 2017, vol. 49, no. 4, pp. 438—456.

18. Levin L. Yu., Isaevich A. I., Semin M. A., Gazizullin R. R. Air–dust mixture dynamics analysis in blind roadway ventilation during operation of shearing machinery. Gornyi Zhurnal. 2015, no. 1, pp. 72—75. [In Russ]. DOI: 10.17580/gzh.2015.01.13

19. Faynburg G. Z., Semin M. A., Isaevich A. G. Interaction of physical mechanisms, mathematical models and technical processes in ventilation of blind roadways. Gornoe ekho. 2020, no. 3, pp. 131—137. [In Russ].

20. Dmitrievich M. R., Alekseevich R. V., Borisovich S. V. Methodological approach to issue of researching dust-explosion protection of mine workings of coal mines. International Journal of Civil Engineering and Technology. 2019, vol. 10, no. 2, pp. 1154–1161.

21. Kobylkin S. S., Khubieva V. M. Inclusion of local natural drag in mine air safety concept. Occupational Safety in Industry. 2021, no. 1, pp. 60—65. [In Russ]. DOI: 10.24000/0409-29612021-1-60-65.

22. Kobylkin S. S., Kobylkin A. S. 3D modeling in engineering design in mine rescue tactics. Gornyi Zhurnal. 2018, no. 5, pp. 82—85. DOI:10.17580/gzh.2018.05.13. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.