Surveying procedure for slope landslide using satellite-based measurements

The article discusses improvement of a surveying procedure for landslides. The procedure includes 3 stages–static observations of reference points using satellite navigation technology; observations of operating points inside the body of landslide using Real-Time Kinematic technology; prediction of landslide displacements. The estimation algorithm is developed for the stability of reference points using approximation of planimetric coordinates and heights of reference points by a plane. It is proposed to determine the planimetric coordinates and heights of operating points using Real-Time Kinematic technology, with an increased period of observations up to 3 min, and with setting a basic receiver toward the most reliable reference point. Prediction of values of landside displacement can use a linear function obtained in approximation of the displacement values with the further adjustment when the landslide velocity changes. The proposed procedure was tested in slope landslide observations on the left-hand bank of the Tosna river in the neighborhood of the Nikolskoe town in the Leningrad Region. The reference and operating points were installed and fixed; their planimetric coordinates and heights were determined using the satellite methods in the mode of statics and using Real-Time Kinematic technology during 4 cycles of observations from July 15, 2023 to July 28, 2024. The signal-inaccessible zones of the landslide were overseen using linear and angular measurements, with position determination of the tacheometer station via three-point intersection relative to the operating points. Prediction on the basis of the observation results made it possible to improve the surveying quality using the proposed procedure.

Keywords: slope system, landslide process, displacement, satellite positioning, Real-Time Kinematic, prediction, linear function.
For citation:

Shabarov A. N., Kuzin A. A., Filippov V. G. Surveying procedure for slope landslide using satellite-based measurements. MIAB. Mining Inf. Anal. Bull. 2025;(2):130-144. [In Russ]. DOI: 10.25018/0236_1493_2025_2_0_130.

Acknowledgements:
Issue number: 2
Year: 2025
Page number: 130-144
ISBN: 0236-1493
UDK: 528.48
DOI: 10.25018/0236_1493_2025_2_0_130
Article receipt date: 28.09.2024
Date of review receipt: 20.11.2024
Date of the editorial board′s decision on the article′s publishing: 10.01.2025
About authors:

A.N. Shabarov1, Dr. Sci. (Eng.), Director of Scientific Center for Geomechanics and Issues of Mining Industry, e-mail: shabarov_an@pers.spmi.ru, ORCID ID: 0000-0001-7925-3163,
A.A. Kuzin1, Cand. Sci. (Eng.), Assistant Professor, e-mail: kuzin_aa@pers.spmi.ru, ORCID ID: 0000-0002-1605-8739,
V.G. Filippov1, Graduate Student, e-mail: s225015@stud.spmi.ru, ORCID ID: 0000-0002-8968-8694,
1 Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, 199106, Russia.

 

For contacts:

V.G. Filippov, e-mail: s225015@stud.spmi.ru.

Bibliography:

1. Bykowa E. N., Banikevich T. D., Zalivatskaya N. V., Pirogova O. E. Modeling the cadastral value of land plots of gardening and horticultural non-profit partnerships taking into account the influence of local factors of the territory. Land. 2024, vol. 13, no. 7, article 1004. DOI: 10.3390/land 13071004.

2. Banikevich T. D., Bykowa E. N., Zalivatskaya N. V., Pirogova O. E. Pattern determination of the territory local factors influence on the land plots’ cadastral value of gardening and horticultural non-profit partnerships. Population and Economics. 2024, vol. 8, no. 3, pp. 86—107. DOI: 10.3897/ popecon.8.e115183.

3. Pospehov G. B., Savon Y., Delgado R., Castellanos E. A., Peña A. Inventory of landslides triggered by Hurricane Matthews in Guantánamo, Cuba. Geography, Environment, Sustainability. 2023, vol. 16, no. 1, pp. 55—63. DOI: 10.24057/2071-9388-2022-133.

4. Dashko R. E., Karpenko A. G. Scientific-practical enhancement principles for the long-term stability of cultural heritage objects through a multi-component underground space analysis. Heritage. 2024, vol. 7, no. 8, pp. 4455—4471. DOI: 10.3390/heritage7080210.

5. Tesfa C., Demeke Sewnet D. GIS-based MCDM approach for landslide hazard zonation mapping in east Gojjam zone, central Ethiopia. Quaternary Science Advances. 2024, vol. 15, article 100210. DOI: 10.1016/j.qsa.2024.100210.

6. Peethambaran B., Leshchinsky B. Application of landslide susceptibility towards urbanization suitability zonation in mountainous settings. International Journal of Disaster Risk Reduction. 2023, vol. 97, article 104061. DOI: 10.1016/j.ijdrr.2023.104061.

7. Glazunov V. V., Burlutskii S. B., Shuvalova R. A., Zhdanov S. V. Improving the reliability of 3D modelling of a landslide slope based on engineering geophysics data. Journal of Mining Institute. 2022, vol. 257, pp. 771—782. [In Russ]. DOI: 10.31897/PMI.2022.86.

8. Islyamova A. A., Khoroshilov V. S. Simulation of displacement of landslides on the materials of geodesic observations and engineering-geological surveys. Vestnik of the Siberian State University of Geosystems and Technologies (SSUGT). 2021, vol. 26, no. 2, pp. 5—17. [In Russ]. DOI: 10.33764/2411-1759-2021-26-2-5-17.

9. Khalkechev R. K., Khalkechev K. V. Application of catastrophe theory for mathematical modelling of landslide process in concave slopes of mountain territories. Sustainable Development of Mountain Territories. 2023, vol. 15, no. 3, pp. 720—726. [In Russ]. DOI: 10.21177/1998-4502-2023-15-3-720-726.

10. Dematteis N., Wrzesniak A., Allasia P., Bertolo D., Giordan D. Integration of robotic total station and digital image correlation to assess the three-dimensional surface kinematics of a landslide. Engineering Geology. 2022, vol. 303, article 106655. DOI: 10.1016/j.enggeo.2022.106655.

11. Kornilov Yu. N., Tsareva O. S. Perfecting the methods of monitoring the buildings and structures deformation. Geodesy and cartography. 2020, no. 4, pp. 9—18. [In Russ]. DOI: 10.22389/0016-71262020-958-4-9-18.

12. Kornilov Yu. N., Tsareva O. S., Shevchenko A. S. Optimization of deformation marks location at building a network in the form of a linear spatial intersection. Geodesy and cartography. 2021, no. 12, pp. 2—11. [In Russ]. DOI: 10.22389/0016-7126-2021-978-12-2-11.

13. Mustafin M. G., Kologrivko A. A., Vasil'ev B. Yu. Accuracy of digital terrain modeling based on periodic airborne laser scanning of a mining object. Gornyi Zhurnal. 2023, no. 2, pp. 56—62. [In Russ]. DOI: 10.17580/gzh.2023.02.09.

14. Di Lascio F. M., Falchetta G., Ferrari D. Change detection from high-resolution airborne laser scans using penalized composite likelihood screening. Spatial Statistics. 2022, vol. 52, article 100710. DOI: 10.1016/j.spasta.2022.100710.

15. Gusev V. N., Blishchenko A. A., Sannikova, A. P. Study of a set of factors influencing the error of surveying mine facilities using a geodesic quadcopter. Journal of Mining Institute. 2022, vol. 254, pp. 173—179. [In Russ]. DOI: 10.31897/PMI.2022.35.

16. Vystrchil M. G., Gusev V. N., Sukhov A. K. A method of determining the errors of segmented GRID models of open-pit mines constructed with the results of unmanned aerial photogrammetric survey. Journal of Mining Institute. 2023, vol. 262, pp. 562—579. [In Russ]. EDN: SZOFVD.

17. Usikov V. I., Ozaryan Yu. A., Leonenko A. V. Appraisal of manmade placers by remote sensing data: a case-study of the Solovievsk and Kerbi gold provinces. Gornyi Zhurnal. 2024, no. 6, pp. 27—33. [In Russ]. DOI: 10.17580/gzh.2024.06.04.

18. Galchenko Yu. P., Kalabin G. V. Methodology for decoding remote sensing data of the Earth's surface in the development of natural and technical systems of subsoil use. Gornyi Zhurnal. 2024, no. 8, pp. 59—63. [In Russ]. DOI: 10.17580/gzh.2024.08.09.

19. Xu Q., Zhao B., Dai K., Dong X., Li W., Zhu X., Yang Y., Xiao X., Wang X., Huang J., Lu H., Deng B., Ge D. Remote sensing for landslide investigations: A progress report from China. Engineering Geology. 2023, vol. 321, article 107156. DOI: 10.1016/j.enggeo.2023.107156.

20. Yaitskaya N. A., Brigida V. S., Gavrina O. A., Kopylov A. S. Photogrammetric assessment of deformation processes of landslide slopes while ensuring sustainable development of Caucasus Territories. Sustainable Development of Mountain Territories. 2023, vol. 15, no. 3, pp. 558—567. [In Russ]. DOI: 10.21177/1998-4502-2023-15-3-558-567.

21. Carle E., Sirguey P., Cox S. C. Measuring landslide-driven ground displacements with high-resolution surface models and optical flow. Computers & Geosciences. 2023, vol. 178, article 105378. DOI: 10.1016/j.cageo.2023.105378.

22. Sepe C., Calcaterra D., Di Martire D., Fusco F., Tufano R., Vitale E., Guerriero L. Triggering conditions and propagation of the December 2019 Palma Campania landslide: Implications for residual hazard estimation at recurrent landslide sites. Engineering Geology. 2023, vol. 322, article 107177. DOI: 10.1016/j.enggeo.2023.107177.

23. Zhuang W., Cui D., Hao M., Song S., Li Z. Geodetic constraints on contemporary three-dimensional crustal deformation in the Laji Shan—Jishi Shan tectonic belt. Geodesy and Geodynamics. 2023, vol. 14, no. 6, pp. 589—596. DOI: 10.1016/j.geog.2023.03.006.

24. Su X., Bao Q., Gao Z., Huang J. Three-dimensional interseismic crustal deformation in the northeastern margin of the Tibetan Plateau using GNSS and InSAR. Journal of Asian Earth Sciences. 2024, vol. 276, article 106328. DOI: 10.1016/j.jseaes.2024.106328.

25. Li S., Gao Y., Jin H. Upper crustal deformation characteristics in the northeastern Tibetan Plateau and its adjacent areas revealed by GNSS and anisotropy data. Earthquake Science. 2023, vol. 36, no. 4, pp. 297—308. DOI: 10.1016/j.eqs.2023.05.003.

26. Zhang Z., Pan Z. Geodetic and seismic constraints on contemporary deformation on the northeastern Tibetan plateau: Velocity and strain rate tensor analysis. Physics of the Earth and Planetary Interiors. 2023, vol. 338, article 107014. DOI: 10.1016/j.pepi.2023.107014.

27. Gao Y., Qu W., Zhang Q., Li J., Li D., Wang Y., Hao M. Assessment of the seismic hazard in North China by combining micro-seismicity records and geodetic observations. Tectonophysics. 2023, vol. 869, article 230130. DOI: 10.1016/j.tecto.2023.230130.

28. Pang Q., Wu Y., Chu R., Zhang Y., Yan J., Zhang L., Liao W., Xiaoqian Sun X., Dokuchits E. Yu., Nkwazema O. C. Deep structural characteristics and dynamic significance of the Southeastern margin of the North China Craton: Insights from gravity/GNSS/seismic observations. Tectonophysics. 2024, vol. 874, article 230243. DOI: 10.1016/j.tecto.2024.230243.

29. Kuzin A. A., Filippov V. G. Development of an algorithm for choosing a method and geodetic equipment depending on the velocity of landslide displacements, by the example of the Miatlinskaya HPS. Vestnik of the Siberian State University of Geosystems and Technologies (SSUGT). 2023, vol. 28, no. 4, pp. 22—37. [In Russ]. DOI: 10.33764/2411-1759-2023-28-4-22-37.

30. Yang C., Yin Y., Zhang J., Ding P., Liu J. A graph deep learning method for landslide displacement prediction based on global navigation satellite system positioning. Geoscience Frontiers. 2024, vol. 15, no. 1, article 101690. DOI: 10.1016/j.gsf.2023.101690.

31. Elagin A. V., Zaitsev M. V., Prokhorov D. A., Shendrik N. K. Estimation of coordinates accuracy determination by EFT M3 GNSS and EFT M4 GNSS satellite receivers in RTK mode. Vestnik of the Siberian State University of Geosystems and Technologies (SSUGT). 2020, vol. 25, no. 3, pp. 26—33. [In Russ]. DOI 10.33764/2411-1759-2020-25-3-26-33.

32. Shu B., He Y., Wang L., Zhang Q., Li X., Qu X., Huang G., Qu W. Real-time high-precision landslide displacement monitoring based on a GNSS CORS network. Measurement. 2023, vol. 217, article 113056. DOI: 10.1016/j.measurement.2023.113056.

33. Wang P., Liu H., Nie G., Yang Z., Wu J., Qian C., Shu B. Performance evaluation of a real-time high-precision landslide displacement detection algorithm based on GNSS virtual reference station technology. Measurement. 2022, vol. 199, article 111457. DOI: 10.1016/j.measurement.2022.111457.

34. Paziewski J., Sieradzki R., Rapinski J., Tomaszewski D., Stepniak K., Geng J., Li G. Integrating low-cost GNSS and MEMS accelerometer for precise dynamic displacement monitoring. Measurement. 2025, vol. 242 Part A, article 115798. DOI: 10.1016/j.measurement.2024.115798.

35. Barbosa L. A., Costa D. C., de Oliveira H. C. Evaluation of low-cost GNSS receivers for speed monitoring. Case Studies on Transport Policy. 2022, vol. 10, no. 1, pp. 239—247. DOI: 10.1016/j. cstp.2021.12.005.

36. Tomaštík J., Varga M., Everett T. Raw GNSS data collected using smartphones and low-cost receiver under optimal and sub-optimal conditions. Data in Brief. 2024, vol. 53, article 110148. DOI: 10.1016/j.dib.2024.110148.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.