Procedure for stability assessment of underground storage cavities in permafrost rocks

The article analyzes the procedure now in force for the stability assessment of underground storage cavities in permafrost rocks. It is found that the procedure lacks damage evaluation of an underground cavity with time as there is no adequate criterion. Failure prediction of an underground cavity disregards the major appropriateness index of a cavity for storage/disposal of petroleum products—loss of active storage capacity. In this regard, the current procedure offers an incomplete stability prediction of underground storage cavities in permafrost rocks. This study presents a modification of the procedure for the stability assessment of underground storage cavities in permafrost rocks. It is proposed to implement stability prediction in two stages. The first stage is the emergency risk assessment for an underground cavity based on the plastic yield zone size in rocks. The second stage is the estimate of impaired serviceability of an underground cavity for storage/disposal of petroleum products (operational integrity). The impaired serviceability is a result of the cavity wall convergence under the action of frozen rock creep and rock fall from roof and sidewalls when the ultimate strength of frozen rocks is overrun. Considering the above-specified processes, it is found that the impaired serviceability of underground storage cavities can be evaluated using such criteria as the roof displacement and the loss of active storage capacity of an underground cavity with time. Based on the corrected criteria, a stability classification is proposed for underground storage cavities. Methods of further operation are determined for each stability category of underground cavities. A case-study of sequential fill of underground cavities based on the predicted loss in their active storage capacity is discussed.

Keywords: structure reliability, stress–strain behavior, numerical methods, underground storage cavities, limit state, permafrost rocks, hydraulic borehole mining, underground storage.
For citation:

Mosina A. S., Mirnyy A. Y., Skvortsov A. A., Surin S. D. Procedure for stability assessment of underground storage cavities in permafrost rocks. MIAB. Mining Inf. Anal. Bull. 2021;(3-1):223—237. [In Russ]. DOI: 10.25018/0236_1493_2021_31_0_223.

Acknowledgements:
Issue number: 3
Year: 2021
Page number: 223-237
ISBN: 0236-1493
UDK: 624.139:621.642.37
DOI: 10.25018/0236_1493_2021_31_0_223
Article receipt date: 16.11.2020
Date of review receipt: 03.02.2021
Date of the editorial board′s decision on the article′s publishing: 10.02.2021
About authors:

Mosina A. S.1, postgraduate student of the Department of Engineering and Ecological Geology, Faculty of Geology;
Mirnyy A. Y.1, Cand. Sci. (Eng.), senior researcher, Faculty of Geology;
Skvortsov A. A.2, Cand. Sci. (Eng.), head of the Department of Geomechanical and Hydrodynamic Modeling;
Surin S. D.2, Cand. Sci. (Eng.), leading research worker;
1 Lomonosov Moscow State University, Moscow, Russia
2 Gazprom Geotechnology LLC, Moscow, Russia.

 

For contacts:
Bibliography:

1. Kazaryan V. A., Silvestrov L. K., Teplov M. K., Hrulev A. S., Pogodaev A. V., Yusupov D. A. The operational experiment of the underground storage of the condensate, created at the everfrost rocks. MIAB. Mining Inf. Anal. Bull. 2011, no. 6, pp. 247—258. [In Russ]

2. Aksyutin O. E., Kazaryan V. A., Ishkov A. G. and others. Stroitel’stvo i ekspluatatsiya rezervuarov v mnogoletnemerzlykh osadochnykh porodakh [Construction and operation of reservoirs in permafrost sedimentary soils], Izhevsk, Izhevskii institut komp’yuternykh issledovanii, 2013, 430 p. [In Russ]

3. Mosina A. S., Nikolaeva S. K., Skvortsov A. A. Forecast of changes in the condition of the permafrost soil mass under the influence of the construction and operation of underground reservoirs for disposal of waste drilling in the conditions of the Far north (on the example of the Middle Yamal). Engineering geology world. 2020, no. 2/2020, Vol. XV, pp. 68–81. DOI 10.25296/1993—5056—2020—15—2-68—81. [In Russ]

4. Sun J., Wang J., Zheng D., Xu H., Li C., Zhao K., Pan Y. Regional Scale 3D Geomechanical Modeling For Evaluating Caprock Integrity And Fault Leakage Potential During Underground Gas Storage Operations In A Produced Field. Society of Petroleum Engineers (SPE), USA, 2017. DOI 10.2118/186053-MS.

5. Piskunova A. S., Surin S. D., Voronova A. V. Problemy zakhoroneniya burovykh otkhodov v podzemnykh rezervuarakh skvazhinnogo tipa v mnogoletnemerzlykh gruntakh [Problems of disposal of waste drilling in borehole underground reservoirs in permafrost soils]. Sergeevskie chteniya: Vyp. 20: Obrashchenie s otkhodami: zadachi geoekologii i inzhenernoi geologii. Materialy godichnoi sessii Nauchnogo soveta RAN po problemam geoekologii, inzhenernoi geologii i gidrogeologii (22 marta 2018 g.). 2018, pp. 244 250 [In Russ]

6. Rotta Loria A. F., Frigo B., Chiaia B. A non-linear constitutive model for describing the mechanical behavior of frozen ground and permafrost. Cold regions science and technology, 2017, Vol. 133, pp. 63—69. DOI 10.1016/j.coldregions.2016.10.010

7. Voronova A. V., Skvortsov A. A. Stability of underground storage reservoirs in permafrost rocks. MIAB. Mining Inf. Anal. Bull. 2018, no. 9, pp. 35—46. DOI 10.25018/0236—1493— 2018—9-0—35—46. [In Russ]

8. Filonenko-Borodich M. M. Mekhanicheskie teorii prochnosti [Mechanical strength theories], Moscow, Moskovskii universitet Publ., 1961, 90 p. [In Russ]

9. Dov Leshchinsky, Ben Leshchinsky, Ora Leshchinsky. Limit state design framework for geosynthetic-reinforced soil structures. Geotextiles and Geomembranes, 2017, Vol. 45, no. 6, pp. 642–652 DOI 10.1016/j.geotexmem.2017.08.005.

10. Zhifu Shen, Mingjing Jiang & Colin Thornton. Shear strength of unsaturated granular soils: three-dimensional discrete element analyses. Granular Matter, 2016, Vol. 18, article number: 37 (2016). DOI: 10.1007/s10035—016—0645-x.

11. Mel’nikov N. V., Rzhevskii V. V., Protod’yakonov M. M. Spravochnik (kadastr) fizicheskikh svoistv gornykh porod [Handbook (cadastre) of physical properties of rocks], Moscow, Nedra, 1975, 279 p. [In Russ]

12. Zhaohui (Joey) Yang, Benjamin Still, Xiaoxuan Ge. Mechanical properties of seasonally frozen and permafrost soil at high strain rate. Cold regions science and technology, 2015, Vol. 113. pp. 12—19 https://doi.org/10.1016/j.coldregions.2015.02.008.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.