Parameter selection for the Hoek–Brown model with softening of rock mass based on laboratory experiments on rock samples and discrete numerical simulations of jointed rock mass

The study aims at development of a procedure for taking into account jointing of rock mass in solving geomechanical problems on jointed rock masses. With a view to improving reliability of prediction of geomechanical processes within the framework of this study, the parameters for the model of rock mass with softening are selected from laboratory experiments; the lab-scale uniaxial and triaxial compression testing of rock samples is exercised; the virtual experiments on uniaxial compression of jointed rock samples of different geometrical parameters are carried out for the scale effect calculation; the strength and structural weakening coefficient are predicted for jointed rock mass; the numerical model of deformation processes in jointed rock mass is built and the numerical simulation of the jointed rock mass compression is executed to determine its mechanical characteristics and the scale effect. As a result, the parameter selection procedure is formed for the Hoek–Brown model of rock mass with softening, with inclusion of jointing, based on laboratory experiments and discrete numerical simulations. The procedure is applicable for the determination of pillar parameters in the mining systems with sublevel caving, etc.

Keywords: jointing, jointed rock mass, softening, residual strength, scale effect, pillar, Hoek– Brown model, uniaxial compression strength, deformation processes.
For citation:

Verbilo P. E., Iovlev G. A., Belyakov N. A. Parameter selection for the Hoek– Brown model with softening of rock mass based on laboratory experiments on rock samples and discrete numerical simulations of jointed rock mass. MIAB. Mining Inf. Anal. Bull. 2025;(2):57-77. [In Russ]. DOI: 10.25018/0236_1493_2025_2_0_57.

Acknowledgements:

The study was supported by the Russian Science Foundation, Project No. 23-17-00144).

Issue number: 2
Year: 2025
Page number: 57-77
ISBN: 0236-1493
UDK: 622.02
DOI: 10.25018/0236_1493_2025_2_0_57
Article receipt date: 28.06.2024
Date of review receipt: 28.10.2024
Date of the editorial board′s decision on the article′s publishing: 10.01.2025
About authors:

P.E. Verbilo1, Cand. Sci. (Eng.), Assistant Professor, e-mail: verbilo_pe@pers.spmi.ru, ORCID ID: 0000-0001-6776-5866,
G.A. Iovlev1, Cand. Sci. (Eng.), Senior Lecturer, e-mail: iovlev_ga@pers.spmi.ru, ORCID ID: 0000-0002-8615-390,
N.A. Belyakov1, Cand. Sci. (Eng.), Assistant Professor, e-mail: belyakov_na@pers.spmi.ru, ORCID ID: 0000-0002-9754-501X,
1 Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, 199106, Russia.

 

For contacts:

P.E. Verbilo, e-mail: verbilo_pe@pers.spmi.ru.

Bibliography:

1. Sinegubov V. Yu., Popov M. G., Vilner M. A., Sotnikov R. O. Influence of stoping on formation of damaged rock zones at boundaries of large cross-section excavations in apatite-nepheline mining. Gornyi Zhurnal. 2021, no. 8, pp. 26—30. [In Russ]. DOI: 10.17580/gzh.2021.08.04.

2. Kozyrev A. A., Kuznetcov N. N., Shokov A. N. Rockburst hazard assessment of hard rocks in the Zhdanovskoe deposit (Kola Peninsula). Russian Mining Industry Journal. 2022, no. 6, pp. 75—82. [In Russ]. DOI: 10.30686/1609-9192-2022-6-75-82.

3. Ilyinov M. D., Petrov D. N., Karmanskiy D. A., Selikhov A. A. Physical simulation aspects of structural changes in rock samples under thermobaric conditions at great depths. Mining Science and Technology (Russia). 2023, no. 8(4), pp. 290—302. [In Russ]. DOI: 10.17073/2500-0632-2023-09150.

4. Protosenya A. G., Belyakov N. A., Bouslova M. A. Modelling of the stress-strain state of block rock mass of ore deposits during development by caving mining systems. Journal of Mining Institute. 2023, vol. 262, pp. 619—627. [In Russ].

5. Gospodarikov A. P., Revin I. E., Morozov K. V. Composite model of seismic monitoring data analysis during mining operations on the example of the Kukisvumchorrskoye deposit of AO Apatit. Journal of Mining Institute. 2023, vol. 262, pp. 571—580. [In Russ]. DOI: 10.31897/PMI.2023.9.

6. Kovalski E. R., Kongar-Syuryun Ch. B., Petrov D. N. Challenges and prospects for several-stage stoping in potash minining. Sustainable Development of Mountain Territories. 2023, vol. 15, no. 2, pp. 349—364. [In Russ]. DOI: 10.21177/1998-4502-2023-15-2-349-364.

7. Kabanov E. I., Tumanov M. V., Smetanin V. S., Romanov K. V. An innovative approach to injury prevention in mining companies through human factor management. Journal of Mining Institute. 2023, vol. 263, pp. 774—784. [In Russ].

8. Meng Wang, An-chi Shi, Hai-bo Li, Fei Yuan, Jia-wen Zhou Deformation and failure mechanism of surrounding rock mass in a large-scale underground powerhouse under high in-situ stress. Results in Engineering. 2024, vol. 21, article 101638. DOI: 10.1016/j.rineng.2023.101638.

9. Tkhorikov A. I., Tulin P. K., Tretenkov I. V. Comparative analysis of methods for assessing the seismic resistance of structures of the lining of an underground structure. MIAB. Mining Inf. Anal. Bull. 2023, no. 9-1, pp. 270—287. [In Russ]. DOI: 10.25018/0236_1493_2023_91_0_270.

10. Karakus M., Kumral M., Kilic O. Predicting elastic properties of intact rocks from index tests using multiple regression modeling. International Journal of Rock Mechanics and Minings Sciences. 2005, vol. 42, no. 2, pp. 323—330. DOI: 10.1016/j.ijrmms.2004.08.005.

11. Karakus M., Tutmez B. Fuzzy and multiple regression modelling for evaluation of intact rock strength based on point load, Schmidt hammer and sonic velocity. Rock Mechanics and Rock Engineering. 2006, vol. 39, no. 1, pp. 45—57. DOI: 10.1007/s00603-005-0050-y.

12. Hoek E., Brown E. T. Practical estimates of rock mass strength. International Journal of Rock Mechanics and Minings Sciences. 1997, vol. 34, no. 8, pp. 1165—1186. DOI: 10.1016/S1365-1609 (97)80069-X.

13. Hoek E., Brown E. T. The Hoek–Brown failure criterion and GSI — 2018 edition. Journal of Rock Mechanics and Geotechnical Engineering. 2019, vol. 11, no. 3, pp. 445—463. DOI: 10.1016/j. jrmge.2018.08.001.

14. Jun Peng, Guan Rong, Cai M., Xiaojiang Wang, Chuangbing Zhou An empirical failure criterion for intact rocks. Rock Mechanics and Rock Engineering. 2014, vol. 47, no. 2, pp. 347—356. DOI: 10.1007/s00603-012-0355-6.

15. Kuznetsov N. N. Issledovanie energoemkosti razrusheniya skal'nykh gornykh porod s tsel'yu otsenki ikh udaroopasnosti (na primere mestorozhdeniy Kol'skogo regiona) [Study of the energy intensity of the destruction of rocks in order to assess their hazard impact (using the example of deposits in the Kola region)], Candidate’s thesis, 2021, 25 p.

16. Mogi K. Pressure dependence of rock strength and transition from brittle fracture to ductile flow. Bulletin Earthquake Research Institute. 1966, vol. 44, pp. 215—232.

17. Shen J., Karakus M. Simplified method for estimating the Hoek–Brown constant for intact rocks. Journal of Geotechnical and Geoenvironmental Engineering. 2014, vol. 140, no. 6. DOI: 10.1061/ (ASCE)GT.1943-5606.0001116.

18. Perras M. A., Diederichs M. S. A review of the tensile strength of rock: Concepts and testing. Geotechnical and Geological Engineering. 2014, vol. 32, no. 2, pp. 525—546. DOI: 10.1007/s10706-014-9732-0.

19. Ramsey J. M., Chester F. M. Hybrid fracture and the transition from extension fracture to shear fracture. Nature. 2004, vol. 428, pp. 63—66. DOI: 10.1038/nature02333.

20. Arshadnejad S., Nick N. Empirical models to evaluate of «mi» as an intact rock constant in the Hoek–Brown rock failure criterion. 19th Southeast Asian Geotechnical Conference & 2nd AGSSEA. 2016, pp. 943—948.

21. Contreras L. F., Brown E. T., Ruest M. Bayesian data analysis to quantify the uncertainty of intact rock strength. Journal of Rock Mechanics and Geotechnical Engineering. 2018, vol. 10, no. 1, pp. 11—31. DOI: 10.1016/j.jrmge.2017.07.008.

22. Bozorgzadeh N., Escobar M. D., Harrison J. P. Comprehensive statistical analysis of intact rock strength for reliability-based design. International Journal of Rock Mechanics and Mining Sciences. 2018, vol. 106, pp. 374—387. DOI: 10.1016/j.ijrmms.2018.03.005.

23. Marinelli F., Zalamea N., Brasile S., Brinkgreve R. B. J. An advanced Hoek & Brown model with softening: User manual. Delft, Plaxis bv, 2019.

24. Jin-feng Zou, Song-qing Zuo, Yuan Xu Solution of strain-softening surrounding rock in deep tunnel incorporating 3D Hoek–Brown failure criterion and flow rule. Mathematical Problems in Engineering. 2016, vol. 11. DOI: 10.1155/2016/7947036.

25. Alejanov L., Alonso E. Considerations of the dilatancy angle in rocks and rock masses. International Journal of Rock Mechanics and Mining Sciences. 2005, vol. 42, no. 4, pp. 481—507. DOI: 10.1016/j.ijrmms.2005.01.003.

26. Manouchehrian A., Cai M. Analysis of rockburst in tunnels subjected to static and dynamic loads. Journal of Rock Mechanics and Geotechnical Engineering. 2017, vol. 9, no. 6, pp. 1031—1040. DOI: 10.1016/j.jrmge.2017.07.001.

27. Cai M., Kaiser P., Tasaka Y., Minami M. Determination of residual strength parameters of jointed rock masses using the GSI system. International Journal of Rock Mechanics and Mining Sciences. 2007, vol. 44, no. 2, pp. 247—265. DOI: 10.1016/j.ijrmms.2006.07.005.

28. Ribacchi R. Mechanical tests on pervasively jointed rock material: insight into rock mass behavior. Rock Mechanics and Rock Engineering. 2000, vol. 33, no. 4, pp. 243—266. DOI: 10.1007/ S006030070002.

29. Marinelli F., Zalamea N., Vilhar G., Brasile S., Cammarata G., Brinkgreve R. Modeling of brittle failure based on Hoek & Brown yield criterion: parametric studies and constitutive validation. 53rd US Rock Mechanics. Geomechanics Symposium, 2019.

30. Walton G., Labrie D., Alejano L. R. On the residual strength of rocks and rock masses. Rock Mechanics and Rock Engineering. 2019, vol. 52, pp. 4821—4833. DOI: 10.1007/s00603-019-01879-5.

31. Jiang H., Zhao J. A simple three-dimensional failure criterion for rocks based on the Hoek– Brown criterion. Rock Mechanics and Rock Engineering. 2015, vol. 48, no. 5, pp. 1807—1819. DOI: 10.1007/s00603-014-0691-9.

32. Jiang H. A failure criterion for rocks and concrete based on the Hoek–Brown criterion. International Journal of Rock Mechanics and Mining Sciences. 2017, vol. 95, pp. 62—72. DOI: 10.1016/j. ijrmms.2017.04.003.

33. Cai M., Kaiser P., Uno H., Tasaka Y., Minami M. Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system. International Journal of Rock Mechanics and Mining Sciences. 2004, vol. 41, no. 1, pp. 3—19. DOI: 10.1016/S1365-1609(03)00025-X.

34. Verbilo P. E., Vilner M. A. Study of the jointed rock mass uniaxial compression strength anisotropy and scale effect. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 47—59. [In Russ]. DOI: 10.25018/ 0236_1493_2022_62_0_47.

35. Protosenya A., Vilner M. Assessment of excavation intersections’ stability in jointed rock masses using the discontinuum approach. Rudarsko Geolosko Naftni Zbornik. 2022, vol. 37, no. 2, pp. 137—147. DOI: 10.17794/rgn.2022.2.12.

36. Karasev M. A., Petrushin V. V. Methodological issues in determination of initial parameters for modeling deformation of rock salt as a polycrystalline discrete medium. MIAB. Mining Inf. Anal. Bull. 2024, no. 9, pp. 47—64. [In Russ]. DOI: 10.25018/0236_1493_2024_9_0_47.

37. Zatsepin M. A., Gospodarikov A. P. Approaches to numerical modeling of dynamic rock fracture in drilling and blasting. Gornyi Zhurnal. 2023, no. 9, pp. 21—27. [In Russ]. DOI: 10.17580/gzh.2023. 09.03.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.