Methodological approach to the need to assess the explosion and fire hazard properties of sulfide-containing polymetallic ores

The article discusses a methodological approach to the rapid assessment of toxicological and explosion-fire (endogenous) hazards in the process of mining operations associated with the extraction of sulfide polymetallic ore containing, first of all, chemically bound arsenic and sulfur, without the use of high-tech material and technical support and highly qualified scientific technical staff. A brief overview of the problem of the occurrence of toxicological and explosion-fire hazards arising in the process of mining operations associated with the extraction of such ores is given. It is shown that, despite all the measures and actions taken to prevent the occurrence of toxicological, endogenous and explosive hazards (explosion of sulfide dust) arising in the process of mining these ores, the problem of express assessment of the hazardous properties of rock mass is urgent. Purpose of the article: to analyze the methods that can be applied as express methods for assessing the hazardous properties of ore materials during their direct extraction in the mine and to propose options for how this or that express method can be implemented by a company that extracts polymetallic ores, directly at the face or in the shortest possible time without the use of highly scientific equipment. As the express methods considered in the article, more attention is paid to the method of experimental determination of the group of non-combustible solids and materials and the energy-dispersive X-ray fluorescence method.

Keywords: X-ray fluorescence analysis, logging, sulfide dust, chemically bound sulfur and arsenic, polymetallic ore, toxicological and explosion-fire hazard, dust explosion, endogenous hazard.
For citation:

Rodionov V. A., Karpov G. N., Leisle A. V. Methodological approach to the need to assess the explosion and fire hazard properties of sulfide-containing polymetallic ores . MIAB. Mining Inf. Anal. Bull. 2022;(6—1):198—213. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_198.


The study was carried out at the expense of a subsidy for the fulfillment of the state task in the field of scientific activity for 2021 No. FSRW-2020-0014.

Issue number: 6
Year: 2022
Page number: 198-213
ISBN: 0236-1493
UDK: 622.8;331.453
DOI: 10.25018/0236_1493_2022_61_0_198
Article receipt date: 14.01.2022
Date of review receipt: 30.05.2022
Date of the editorial board′s decision on the article′s publishing: 10.05.2022
About authors:

Rodionov V. A., Cand. Sci. (Eng.), Associate Professor of the Department of Industrial Safety, Saint Petersburg Mining University, 199106, Saint Petersburg, 21st line V. O., 2, Russia, e-mail:;
Karpov G. N., Cand. Sci. (Eng.), Associate Professor of the Department of Mining Engineering, Saint Petersburg Mining University, Saint Petersburg 199106, Russia;;
Leisle A. V., Cand. Sci. (Eng.), Associate Professor of the Department of Industrial Safety, Saint Petersburg Mining University, 199106, Saint Petersburg, 21st line V. O., 2, Russia, e-mail:


For contacts:

Rodionov V. A., e-mail:


1. Magomet R., Zhikharev S., Maltsev S., Norina N. Method of rapid assessment of sulfide sulfur content in host rocks. E3S Web of Conferences. 2021, vol. 244, 04009. DOI: 10.1051/e3sconf/202124404009.

2. Gartman A., Findlay A. J., George W. Luther III Nanoparticulate pyrite and other nanoparticles are a widespread component of hydrothermal vent black smoker emissions. Chemical Geology. 2014, vol. 366, pp. 32–41. DOI: 10.1016/j.chemgeo.2013.12.013.

3. Zhang W. D. In-situ pyrite trace element and sulfur isotope characteristics and metallogenic implications of the Qixiashan Pb-Zn-Ag polymetallic deposit, Eastern China. Ore Geology Reviews. 2022, vol. 144, pp. 30–63. DOI: 10.1016/j. oregeorev.2022.104849.

4. Ayupova N., Melekestseva I., Maslennikov V., Sadykov S. Mineralogy and geochemistry of clastic sulfide ores from the Talgan VHMS deposit, South Urals, Russia: Signatures of diagenetic alteration. Ore Geology Reviews. 2022, vol. 144. DOI: 10.1016/j. oregeorev.2022.104839.

5. Vikentyev I. V., Belogub E. V., Novoselov K. A., Moloshag V. P. Metamorphism of volcanogenic massive sulphide deposits in the Urals. Ore Geology Reviews. 2017, vol. 80, pp. 30–63. DOI: 10.1016/j.oregeorev.2016.10.032.

6. Prodan M., Lupu L-A., Ghicioi E., Nalboc I., Szollosi-Mota A. Pyrophoric sulfides influence over the minimum ignition temperature of dust cloud. AIP Conference Proceedings. 2017, vol. 1918, 020001. DOI: 10.1063/1.5018496.

7. Rylnikova M. V., Mitishova N. A. Research technique for explosion hazard of lowgrade sulphide ore in underground mines. MIAB. Mining Inf. Anal. Bull. 2019;(9):41–51. DOI: 10.25018/0236-1493-2019-09—0-41—51.

8. Rodionov V. A., Tursenev S. A., Skripnik I. L., Ksenofontov Yu. G. Results of the study of kinetic parameters of spontaneous combustion of coal dust. Journal of Mining Institute. 2020, vol. 246, pp. 617–622. [In Russ]. DOI:10.31897/PMI.2020.6.3.

9. Dmitrievich R. M., Alekseevich R. V., Borisovich S. V. Methodological approach to issue of researching dust-explosion protection of mine workings of coal mines. International Journal of Civil Engineering and Technology (IJCIET). 2019, vol. 10, iss. 2, pp. 1154–1161, Article ID: IJCIET_10_02_112

10. Carson P., Mumford C. Hazardous Chemicals Handbook. Port Sunlight UK. 2021, 608 p. Available at: URL: (accessed on 21.12.2021).

11. Bartlett H. Best Practice in African Mining. Journal of the Southern African Institute of Mining and Metallurgy. 2014, vol. 11, no. 1, pp. 77–83.

12. Vaughan D. J. Sulfides. Encyclopedia of Geology (Second Edition), Academic Press, Oxford, 2021, pp. 395–412. DOI: 10.1016/B978—0-12—409548—9.02903—1

13. Haoyuan Dai, Jianchun Fan Experimental study on ignition mechanisms of wet granulation sulfur caused by friction. Journal of Hazardous Materials. 2018, vol. 344, pp. 480–489. DOI: 10.1016/j.jhazmat.2017.10.056.

14. Pan Ya., Spijker Ch., Raupenstrauch H. CFD modeling of particle dispersion behavior in the MIKE 3 apparatus. Alexandria Engineering Journal. 2022, vol. 61, iss. 12, pp. 9305—9313. DOI: 10.1016/j.aej.2022.03.039.

15. Kazanin O., Sidorenko A., Drebenstedt C. Intensive underground mining technologies: Challenges and prospects for the coal mines in Russia. Acta Montanistica Slovaca. 2020, vol. 26 (1), pp. 60–69. DOI: 10.46544/AMS.v26i1.05.

16. Ermolaev A. I., Teterev N. A. Analysis of research in the feld of dust explosions and their prevention in underground mines. Izvestiya vuzov. Gornyy zhurnal. 2015, no. 8, pp. 75–80. [In Russ].

17. Gorinov S. A., Maslov I. Yu. Ignition of dust-air mixtures under the action of air shock waves in underground mining of massive sulfde ores. MIAB. Mining Inf. Anal. Bull. 2017, no. 12 (special issue 33), pp. 13–22. [In Russ]. DOI: 10.25018/0236-1493-2017-12—33—13—22.

18. Gorinov S. A., Maslov I. Yu. Physical and mathematical model of heating of sulfdebearing inclusions in ammonium nitrate explosives. MIAB. Mining Inf. Anal. Bull. 2017, no. 12 (special issue 33), pp. 3–12. [In Russ]. DOI: 10.25018/0236-1493-2017-12—33—3-12.

19. Ryl’nikova M. V., Radchenko D. N., Mitishova N. A. Investigation of the conditions and mechanism of the explosion of dust-air mixtures in the mine workings in underground mining of pyrite deposits. Scientific foundations of mining safety: Materials of the AllRussian Scientific and Practical Conference. Moscow, IPKON RAN. 2017, pp. 199–206. [In Russ].

20. Vakh A. S., Avchenko O. V., Gvozdev V. I., Goryachev N. A., Karabtsov А. А., Vakh E. A. Minerals of the Pb-As-Sb-S и Cu-Pb-As-Sb-S systems in the ores of berezitovoe gold-polymetallic deposit (Upper Amur region, Russia). Geology of ore deposits. 2019, vol. 61, no. 3, pp. 64–84. [In Russ]. DOI: 10.31857/S0016—777061364—84.

21. Kornev A. V., Korshunov G. I., Kudelas D. Reduction of Dust in the Longwall Faces of Coal Mines: Problems and Perspective Solutions. Acta Montanistica Slovaca. 2021, vol. 26 (1), pp. 84–97. DOI: 10.46544/AMS.v26i1.07.

22. Kharitonov I. L., Tereshkin A. I., Kornev A. V., Korshunov G. I., Korneva M. V. Development of measures on the improvement of dust environment in the coal mines working faces. Bezopasnost’ Truda v Promyshlennosti. 2019, no. 12, pp. 53–59. [In Russ]. DOI: 10.24000/0409-2961-2019-12—53—59.

23. Romanchenko S. B., Naganovskiy Y. K., Kornev A. V. Innovative ways to control dust and explosion safety of mine workings. Journal of Mining Institute. 2021, vol. 252, pp. 927–936. DOI: 10.31897/PMI.2021.6.14.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.