Methodology to detect and predict horizontal deformation at the Earth’s surface of adjacent rock mass blocks by GPS data

Authors: Antonov V. A.

The main provisions of the methodology for detecting and predicting horizontal deformation at the Earth’s surface of adjacent rock mass blocks based on GPS monitoring data are presented. The scope of the methodology is disclosed, including the mathematical modeling of block displacements and the resultant deformation in the interblock contact zone, methods for identifying parameters of the model and the aspects of its application. The model is created with regard to the recorded multidirectional trend movements of reference points within the geodetic observation network (markers), based on the representations of the blocks by the spatial constraints of their horizontal dimensions and their elastic properties in the hierarchical mosaic structure of the enclosing rock mass. Assuming that the size of a block of the Earth’s surface is not larger than 5 km within a mineral deposit, the displacements and strains are considered in plan view. The distributions of the linear and angular strains in the blocks and in the zone of interblock contact are calculated as derivatives of the displacement functions of their points. The resultant areal deformation is represented by the sum of the linear and angular strains. The model parameters are identified using the methods of least squares and parabolic vertex approximations implemented in the specified sequence of iterative calculations from the given optimization formulas. In case of rotation of the blocks, it is sufficient to identify the coordinates of their conditional centers from the marker vectors, assuming that there is no translational movement. The iterative calculations are controlled by the standard deviation of the model and marker movements, which is reduced to an acceptable small limit determined by the GPS positioning error. The capacity of the model to detect the zones of horizontal deformation of different value and sign is demonstrated as a case-study of recorded displacements of markers and by the calculation of the corresponding model parameters.

Keywords: Earth’s surface blocks, displacement markers, rotation and translational motion, areal deformation, model, parameter identification, regularity.
For citation:

Antonov V. A. Methodology to detect and predict horizontal deformation at the Earth’s surface of adjacent rock mass blocks by GPS data. MIAB. Mining Inf. Anal. Bull. 2021;(5— 2):16—29. [In Russ]. DOI: 10.25018/0236_1493_2021_52_0_16.


The work was implemented within the framework of the State Contract with the Institute of Mining, Ural Brunch of the Russian Academy of Sciences in Ekaterinburg, Topic No. AAAA-A19-119020790024-7.

Issue number: 5
Year: 2021
Page number: 16-29
ISBN: 0236-1493
UDK: 622.831
DOI: 10.25018/0236_1493_2021_52_0_16
Article receipt date: 21.12.2020
Date of review receipt: 24.03.2021
Date of the editorial board′s decision on the article′s publishing: 10.04.2021
About authors:

Antonov V. A., Dr. Sci. (Eng.), Institute of Mining, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Russia,

For contacts:

1. Balek E. A. Taking into ackount the mosaic structure of stress-strain state of rock mass during solving the practical tasks of mining. Problemy nedropol’zovaniya. 2018. no. 3. S. 140—150. [In Russ]

2. Savage J. C., Gan W., Svarc J. L. Strain accumulation and rotation in the Eastern California Shear Zone. J. Geophys. Res. 2001. Vol. 106. N. B10. P. 21995—22007.

3. Cheskidov V. V., Lipina A. V., Melnichenko I. A. Integrated monitoring of engineering structures in mining. Eurasian Mining. 2018. No. 2. pp. 18—21.

4. Zheng G., Wang H., Wright T. J., Lou Y., Zhang R., Zhang W., Shi Ch., Huang J., Wei N. Crustal Deformation in the India-Eurasia Collision Zone from 25 Years of GPS Measurements. Journal of Geophysical Research: Solid Earth. 2017. 122 (11). pp. 9290—9312.

5. Mazurov B. T. Matematicheskoe modelirovanie pri issledovanii geodinamiki [Mathematical modeling in the study of geodynamics]. Novosibirsk: Sibprint. 2019. pp. 59, 282, 291. [In Russ]

6. Dorogova I. E. Study of crustal deformations based on the results of geodetic data using the finite element method. SGGA. 2013. T. 1. no. 1. pp. 190—193. [In Russ]

7. Serov M. A., Zhizherin V. S. Simulation of the stress-strain state of the crust of the Upper Amur. Uspekhi sovremennogo estestvoznaniya. 2017. no. 10. pp. 107—112. [In Russ]

8. Seredovich V. A., Pankrushin, V. K., Mazurov B. T. Identifikaciya napryazhennodeformirovannogo sostoyaniya i povorotnyh dvizhenij geodinamicheskih sistem po nazemnym i sputnikovym nablyudeniyam [Identification of the stress-strain state and turning movements of geodynamic systems based on ground and satellite observations]. Sb. materialov VIII mezhdunar. nauchno-prakt. konf. Geoinfocad, Franciya, Nicca Novosibirsk: SGGA. 2004. pp. 11—14. [In Russ]

9. Takuma Y., Tsuyoshi I., Yuji Y., Ryoichiro A., Takane H., Muneo H. Fast crustal deformation computing method for multiple computations accelerated by a graphics processing unit cluster. Geophysical Journal International. 2017. Vol. 210. P. 787—800.

10. McCaffrey R. Crustal block rotations and plate coupling. Plate Boundary Zones. 2002. Vol. 30. pp. 100—122.

11. Meade B. J., Hager B. H. Block models of crustal motion in southern California constrained by GPS measurements. Ibid. 2005. Vol. 110, N B03403.

12. Muhamediev Sh. A., Zubovich A. V., Kuzikov S. I. Allocation of blocks of the earth’s crust according to gps measurements. Doklady Akademii nauk. 2006. T. 408. no. 4. pp. 539—542. [In Russ]

13. He X., Montillet J., Fernandes R., Bos M., Yu K., Hua X., Jiang W. Review of current GPS methodologies for producing accurate time series and their error sources. Journal of Geodynamics. 2017. Vol. 106. P. 12—29.

14. Antonov V. A. Models of horizontal displacement and deformation of blocks of the Earth’s surface. Problemy nedropol’zovaniya. 2020. no. 1. pp. 104—112. [In Russ]

15. Antonov V. A. Functional-factor model of horizontal displacement of horizontal blocks of the Earth’s surface. Izvestiya TulGU (Nauki o Zemle). 2019. no. 4. pp. 187—195. [In Russ]

16. Vlasov A. V. Osnovy teorii napryazhennogo i deformirovannogo sostoyaniya [Fundamentals of the theory of stress and strain state]. Moscow: MGTU. 2006. p. 58. [In Russ]

17. Sashurin A. D. Sdvizhenie gornyh porod na rudnikah chernoj metallurgii [Displacement of rocks in the mines of ferrous metallurgy]. Ekaterinburg: IGD UrO RAN 1999. p. 94. [In Russ]

18. Antonov V. A. Extraction of mathematical and statistical patterns in experimental studies of mining processes. Problemy nedropol’zovaniya. 2018. no. 4. pp. 61—70.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.