Estimation procedure of multiple passability of hauling unit on weak ground

Peat cutting involves multiple passes of hauling units on weak ground. The hauling unit passability on weak ground is analyzed in the condition of peat extraction pits. The ultimate strengths of peat ground are determined as [] =13.9 kPa and [q] =146 kPa in the assessment of peat haulage on weak ground. The procedure is developed for selecting semi-trail wheel travel tires. For some tire sizes, the relations of the mean maximum pressure (MMP) of the semi-trailer and the main tire parameters are obtained from mathematical modeling. Using the cone index, the connection of haulage vehicles with maximum strengths of peat ground is determined for multiple passes (VCI50) for each tire size. The structure of a hauling unit is validated to be composed of a power-driven traction device represented by double-wheeled tractor BELARUS-1221.4 and a tandem-axle semi-trailer 1585 kg in weight to transport load of 4000 kg, and the efficient set of radial flotation tires 600/50R22.5 is substantiated for a double-wheeled semi-trailer. Physical simulation determined the draft behavior of the doublewheel model of the tandem-axle semi-trailer. It is found that draft has a hysteresis of 75–85% after double pass and stabilizes after the 7th loading cycle, and the contact area of wheels with the compacted wheel track surface grows, which increases multiple passability. The research results can be used in design of hauling units toward their multiple passability on weak ground in any territory development.

Keywords: open pit, weak ground, excavated peat, haulage, hauling unit, semi-trailer, tires, passability.
For citation:

Mikhailov А. V., Kazakov Yu. A. Estimation procedure of multiple passability of hauling unit on weak ground. MIAB. Mining Inf. Anal. Bull. 2022;(8):95-110. [In Russ]. DOI: 10.25018/0236_1493_2022_8_0_95.

Issue number: 8
Year: 2022
Page number: 95-110
ISBN: 0236-1493
UDK: 553.97:622.331
DOI: 10.25018/0236_1493_2022_8_0_95
Article receipt date: 17.03.2022
Date of review receipt: 15.04.2022
Date of the editorial board′s decision on the article′s publishing: 10.07.2022
About authors:

A.V. Mikhailov1, Dr. Sci. (Eng.), Professor, e-mail:, ORCID ID: 0000-0002-0516-7737,
Yu.A. Kazakov1, Graduate Student, e-mail:, ORCID ID: 0000-0002-7040-5412,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

For contacts:

Yu.A. Kazakov, e-mail:


1. Burt C., Caccetta L. Equipment selection for surface mining: a review. Journal Interfaces Archive. 2014, vol. 44, no. 2, pp. 143—162.

2. Mikhailov A. V., Garmaev O. Z., Garifullin D. R., Kazakov Y. A. A potential application of in-pit crushing-conveying and dewatering system in peat mining. IOP Conference Series: Earth and Environmental Science. 2019, vol. 378, no. 1, article 012086. DOI: 10.1088/17551315/378/1/012086.

3. Ivanov S. L., Ivanova P. V., Kuvshinkin S. Y. Promising model range career excavators operating time assessment in real operating conditions. Journal of Mining Institute. 2020, vol. 242, pp. 228—233. [In Russ]. DOI: 10.31897/pmi.2020.2.228.

4. Fomin S. I., Faul' A. A., Ponomaryov A. I. Open cast technological system with in-pit fully mobile crushing reliability avaluation. Journal of Mining Institute. 2011, vol. 190, pp. 51—56. [In Russ].

5. Faul' A. A. Opredelenie parametrov i pokazateley otkrytoy razrabotki mestorozhdeniy nerudnykh stroitel'nykh materialov s ispol'zovaniem mobil'nykh drobil'nykh kompleksov [Determination of parameters and indicators of open-cast mining of deposits of non-metallic building materials using mobile crushing complexes], Candidate’s thesis, Saint-Petersburg, SPbGU, 2012, 20 p.

6. Lapshin N. S. Obosnovanie organizatsionno-tekhnicheskikh metodov otkrytoy razrabotki peschano-graviynykh mestorozhdeniy s ispol'zovaniem mobil'nykh drobil'no-sortirovochnykh kompleksov [Justification of organizational and technical methods of opencast development of sand and gravel deposits using mobile crushing and screening complexes], Candidate’s thesis, Saint-Petersburg, SPbGU, 2012, 20 p.

7. Litvinenko V. Foreword: Sixty-year Russian history of Antarctic sub-glacial lake exploration and Arctic natural resource development. Chemie der Erde. 2020, vol. 80, no. 3, article 125652. DOI: 10.1016/j.chemer.2020.125652.

8. Zyuzin B. F., Zhigul'skaya A. I., Yudin S. A. Distortnost' v metodologii vzaimodeystviya tekhnologicheskikh mashin s torfyanoy zalezh'yu [Distortion in the methodology of interaction of technological machines with peat deposit], Tver, TGTU, 2021, 168 p.

9. Kuvshinkin S. Y., Ivanova P. V. Developing a methodology for estimation of excavation techniques for given operating conditions. IOP Conference Series: Earth and Environmental Science. 2019, no. 378, pp. 1—5.

10. Shibanov D. A., Ivanov S. L., Shishkin P. V. Digital technologies in modeling and design of mining excavators. Journal of Physics: Conference Series. 2021, no. 1753, pp. 1—6.

11. Fomin V. M. Avtomobili. Teoriya ekspluatatsionnykh svoystv avtomobiley [Automobiles. Theory of vehicle performance], Moscow, RUDN, 2008, 112 p.

12. Taghavifar H., Mardani A. Effect of velocity, wheel load and multipass on soil compaction. Journal of the Saudi Society of Agricultural Sciences. 2014, no. 13, pp. 57—66.

13. Zyuzin B. F., Zhigul'skaya A. I., Yudin S. A. Mekhanika torfa i torfyanoy zalezhi [Mechanics of peat and peat deposit], Tver, TGTU, 2020, 112 p.

14. Sirén M., Ala-Ilomäki J., Lindeman H. Soil disturbance by cut-to-length machinery on mid-grained soils. Silva Fennica. 2019, vol. 53, pp. 1—24. DOI: 10.14214/sf.10134.

15. Wong Y. C. D., Lim H. H. S., Chan W. Q. An assessment of land vehicles’ trafficability. DSTA Horizons. 2016, pp. 54—63.

16. Šabartová Z., Lindroth P., Strömberg A. B., Patriksson M. An optimization model for truck tyres selection. Proceedings of the 4th International Conference on Engineering Optimization 2014, Lisbon, Portugal. 2014, pp. 561—566.

17. Jones M., Arp P. Soil trafficability forecasting. Open Journal of Forestry. 2019, vol. 9, pp. 296—322. DOI: 10.4236/ojf.2019.94017.

18. Mikhailov A. V. Open-pit mining of lignin waste storage. Journal of Mining Institute. 2017, vol. 223, pp. 44—50. [In Russ]. DOI: 10.18454/PMI.2017.1.44.

19. Priddy J. D., Willoughby W. E. Clarification of vehicle cone index with reference to mean maximum pressure. Journal of Terramechanics. 2006, vol. 43, no. 2, pp. 85—96.

20. Poltorak B. J., Labelle E. R., Jaeger D. Soil displacement during ground-based mechanized forest operations using mixed-wood brush mats. Soil and Tillage Research. 2018, vol. 179, pp. 96—104. DOI: 10.1016/j.still.2018.02.005.

21. Kim Yu. A., Bobrovich V. A., Voitekhovskii B. V., Isachenkov V. S. Influence of the air pressure value in the tires of the wheels on the geometric parameters of the contact patch when interacting with the supporting surface. Trudy BGTU. Seriya 1: Lesnoe khozyaystvo, prirodopol'zovanie i pererabotka vozobnovlyaemykh resursov. 2018, no. 2(210), pp. 308—312. [In Russ].

22. Kolář P. A joint model of heavy truck, tyres, and operating environment for tyres selection. Master’s thesis, Sweden, Gothenburg, Chalmers University of Technology, 2015, 83 p.

23. Yablonev A. L., Dorogov O. V. Justification of the parameters of pneumatic wheel running passive trailed machines for transportation of milled peat. MIAB. Mining Inf. Anal. Bull. 2015, no. 7, pp. 174—177. [In Russ].

24. Caterpillar Performance. Handbook Edition 49. Caterpillar, Peoria, Illinois, U.S.A. 2019. 2438 p.

25. Joshi A. K., Dandekar I. A., Gaikwad M. V., Harge C. G. Pugh matrix and kano model-the significant techniques for customer’s survey. International Journal of Emerging Technology and Advanced Engineering. 2019, vol. 9, no. 6, pp. 53—55.

26. Shoop S. A. Terrain characterization for trafficability, U.S. Army cold regions research and engineering laboratory. CRREL Report. 1993, no. 93-6, 30 p

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.