Optimizing nonlinear soil body models for geotechnical conditions of Saint-Petersburg

The quality analysis of physical and mechanical parameters of soil body acquires increasingly higher topicality as complexity of construction engineering grows and it is required to carry out nonlinear modeling of soil mass. This study addresses the site survey data obtained in the territory of Saint-Petersburg. The procedures to determine quality index of soil samples are discussed, the influence of quality of samples on their physical and mechanical parameters is assessed. The procedures for determining overconsolidation factor and natural stress state formation in soil mass are compared. The influence of structural discontinuity of test samples on their volumetric stiffness assumed in nonlinear soil body models is estimated. The consolidation test curve is corrected using two graphical methods, and the influences of these methods on initial geomechanical parameters are compared. Based on the performed analysis, the procedure is proposed for the determination and optimization of input parameters for modeling consolidating soil bodies using geotechnical engineering simulation PLAXIS. The quality of soil mass in the area of Saint-Petersburg is described, and the impact of different parameters on the model calibration and its agreement with the lab-scale test data is discussed.

Keywords: overconsolidation factor, nonlinear models, soil mass, Plaxis, SoilTest, triaxial testing, compression testing, consolidating soil body model, numerical modeling.
For citation:

Iovlev G. A., Piscunov N. S., Bahvalov E. D., Ochkurov V. I.Optimizing nonlinear soil body models for geotechnical conditions of Saint-Petersburg. MIAB. Mining Inf. Anal. Bull. 2022;(7):148-163. [In Russ]. DOI: 10.25018/0236_1493_2022_7_0_148.

Acknowledgements:
Issue number: 7
Year: 2022
Page number: 148-163
ISBN: 0236-1493
UDK: 624.131.2; 624.131.37
DOI: 10.25018/0236_1493_2022_7_0_148
Article receipt date: 30.12.2021
Date of review receipt: 03.05.2022
Date of the editorial board′s decision on the article′s publishing: 10.06.2022
About authors:

G.A. Iovlev1, Cand. Sci. (Eng.), Assistant of Chair, e-mail: Iovlev_ga@pers.spmi.ru, ORCID ID: 0000-0002-8615-390X,
N.S. Piscunov1, Student, e-mail: piscunov92@mail.ru, ORCID ID: 0000-0003-4099-7493, 
E.D. Bahvalov1, Student, e-mail: jenbah@yandex.ru, ORCID ID: 0000-0003-0190-5605,
V.I. Ochkurov1, Cand. Sci. (Eng.), Assistant Professor, e-mail: Ochkurov@spmi.ru, ORCID ID: 0000-0002-3160-3811,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

E.D. Bahvalov, e-mail: jenbah@yandex.ru.

Bibliography:

1. Kutepov Yu. Yu., Borger E. B. Numerical modeling of the rock mass subsidence applied to geological conditions of the mine named after Ruban in Kuzbass. MIAB. Mining Inf. Anal. Bull. 2017, no. 5, pp. 66—75. [In Russ].

2. Karasev M. A., Buslova M. A., Vilner M. A., Nguyen T. T. Method for predicting the stressstrain state of the vertical shaft lining at the drift landing section in saliferous rocks . Journal of Mining Institute. 2019, vol. 240, pp. 628—637. [In Russ]. DOI: 10.31897/PMI.2019.6.628.

3. Protosenya A. G., Verbilo P. E. Studying the compressive strength of a fractured mountain massif. Journal of Mining Institute. 2017, vol. 223, pp. 51—57. [In Russ]. DOI: 10.18454/ PMI.2017.1.51.

4. Komolov V., Belikov A., Demenkov P. Research on load-bearing constructions behavior during pit excavation under «Slurry Wall» protection. Lecture Notes in Civil Engineering. 2022, vol. 180, pp. 313—323. DOI: 10.1007/978-3-030-83917-8_29.

5. Ignatiev S. A., Sudarikov A. E., Imashev A. Z. Modern mathematical methods for predicting conditions for maintaining and securing mine workings. Journal of Mining Institute. 2019, vol. 238, pp. 371—375. [In Russ]. DOI: 10.31897/PMI.2019.4.371.

6. Demenkov P. A., Goldobina L. A., Trushko O. V. Method of forecasting the deformation of the Earth's surface during the construction of pits in conditions of dense urban development using the method «wall in the ground». Journal of Mining Institute. 2018, vol. 233, pp. 480—486. [In Russ]. DOI: 10.31897/PMI.2018.5.480.

7. Bringreve R. B. J. Automated model and parameter selection: incorporating expert input into geotechnical analyses. Geostrata. 2019, vol. 23, no. 1, pp. 38–45, available at: http:// www.readgeo.com/geostrata/jan_feb_2019/MobilePagedArticle.action?articleId=1455782#artic leId1455782.

8. Vasenin V. A. Evaluation of disturbed parameters of the natural structure of the laboratory samples of clay deposits during engineering and geological surveys in St. Petersburg and the nearest areas. Inzhenernaya geologiya. 2018, vol. 13, no. 6, pp. 48—65. [In Russ]. DOI: 10.25296/1993-5056-2018-13-6-48-65.

9. Protosenya A. G., Lebedev M. O., Karasev M. A., Belyakov N. A. Geomechanics of lowsubsidence construction during the development space in large cities and megalopolises. International Journal of Mechanical and Production Engineering Research and Development. 2019, vol. 9, no. 5, pp. 1005–1014.

10. Grishchenko A. I., Semenov A. S., Mel'nikov B. E. Modeling of core deformation and destruction processes during its extraction from great depths. Journal of Mining Institute. 2021, vol. 248, pp. 243—252. [In Russ]. DOI: 10.31897/PMI.2021.2.8.

11. Vasenin V. A. The method of determining the overconsolidation pressure based on the statistical dependencies of thr distribution of the compression index. Part 1. Justification of the method. Inzhenernaya geologiya. 2019, vol. 14, no. 3, pp. 37—57. [In Russ]. DOI: 10.25296/19935056-2019-14-3-37-57.

12. Vasenin V. A. The method for determining the overconsolidation pressure based on the statistical dependence of the distribution of the compression index. Part 2. Features of the method. Inzhenernaya geologiya. 2019, vol. 14, no. 4, pp. 24—42. [In Russ]. DOI: 10.25296/19935056-2019-14-4-24-42.

13. Mayne P. W., Coop M. R., Springman S. M., Huang A., Zornberg J. G. Geomaterial behavior and testing. Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering. vol. 4, 2009, pp. 2777—2872. DOI: 10.3233/978-1-60750-031-5-2777.

14. Grunty. Metody laboratornogo opredeleniya parametrov pereuplotneniya. GOST R-58326-2018 [Soils. Method of laboratory determination of the parameters of overconsolidation. State Standart R-58326-2018], 01.06.2019. [In Russ].

15. Shashkin A. G. Viscous-elastic-plastic model of clay soil behavior. Razvitie gorodov i geotekhnicheskoe stroitel'stvo. 2011, no. 2, pp. 1—32. [In Russ].

16. Alekseev A. V., Iovlev G. А. Adjustment of hardening soil model to engineering geological conditions of Saint-Petersburg. MIAB. Mining Inf. Anal. Bull. 2019, no. 4, pp. 75—87. [In Russ]. DOI: 10.25018/0236-1493-2019-04-0-75-87.

17. Brinkgreve R. B. J., Engin E., Swolfs W. M. Plaxis 2D manual. Rotterdam, Netherlands, Balkema, 2017, 816 p.

18. Demenkov P. A., Trushko O. V., Komolov V. V. Forecast of subsidence of the earth's surface during the construction of a pit near the development. Izvestiya Tul’skogo gosudarstvennogo universiteta, Nauki o zemle. 2019, no. 2, pp. 300—309. [In Russ].

19. Smirnova O. M. Rheologically active microfillers for precast concrete. International Journal of Civil Engineering and Technology. 2018, vol. 9, no. 8, pp. 1724—1732.

20. Robertson P. K., Cabal K. L. Guide to cone penetration testing for geotechnical engineering. 6th edition, Gregg Drilling & Testing Inc., USA, 2015, 143 p.

21. Goldfeld I. Z. Correlation between cone penetration soil test data using the devices of the first and second types. International Journal Geotechnics. 2013, no. 3, pp. 48—66. [In Russ].

22. Terzaghi K., Peck R. B. Mesri G. Soil mechanics in engineering practice. John Wiley and Sons, New York, 1996, 592 p.

23. Lunne T., Berre T., Strandvik S. Sample disturbance effect in soft low plasticity Norwegian clay. Proceedings of the Conference on Recent Developments in Soil Mechanics. Rio-deJaneiro, 1997, pp. 81–102.

24. Yanhouide J. A. G. Consolidation parameters for embankment settlement on soft clay soils in Houston area, 2007. DOI: 10.13140/RG.2.1.2417.6728.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.