Mineralogical and Microstructural Analysis in Anisotropic Rocks: Gneiss from Erzgebirge as a case of study

Anisotropy is one of the most important features that must be considered in the evaluation for comminution. The evaluation of physical and mineralogical properties provides parameters to optimize the size reduction process using the natural crushing behaviour of raw materials, which is mainly linked to the texture and structure of the rocks. Mineralogical and petrographic characterisation plays an important role and must be as accurate as possible to predict the response of rocks to mechanical stress. This article presents the first results of characterisation using the integration of optical microscopy techniques with numerical description by Quantitative Microstructural Analysis (QMA), three-dimensional characterisation by microcomputed tomography (µCT) and dilatometry experiments. The integration of these techniques primarily aims at seeing the applicability of QMA to anisotropic materials and obtaining textural and structural parameters. The analyses were conducted on gneisses from the Saxony´s mining district, Erzgebirge (Ore Mountains), Germany.

Keywords: quantitative microstructural analysis, Freiberg gneiss, anisotropic characterisation.
For citation:

Bravo A. H., Heide G., Popov O., Lieberwirth H. Mineralogical and Microstructural Analysis in Anisotropic Rocks: Gneiss from Erzgebirge as a case of study. MIAB. Mining Inf. Anal. Bull. 2022;(9−1):87—102. [In Russ]. DOI: 10.25018/0236_1493_2022_101_0_87.

Acknowledgements:

The team would like to thank the Sächsische Aufbaubank (SAB) in cooperation with the European Social Fund (ESF, application No.: 100270113) for the funding of the InnoCrush project.

Issue number: 10
Year: 2022
Page number: 87-102
ISBN: 0236-1493
UDK: 622
DOI: 10.25018/0236_1493_2022_101_0_87
Article receipt date: 20.03.2022
Date of review receipt: 27.06.2022
Date of the editorial board′s decision on the article′s publishing: 10.09.2022
About authors:

Bravo A. H., Cand. Sci. (Eng.), Researcher, Technische Universität Bergakademie Freiberg (TUBAF) Freiberg, Germany, e-mail : bravo@iart.tu-freiberg.de, ORCID ID: 0000-0002-8125-4760;
Heide G., Prof., Dr. Sci. (Eng.), Head of Institute of Mineralogy, Technische Universität Bergakademie Freiberg (TUBAF) Freiberg, Germany, e-mail : gerhard.heide@mineral.tu-freiberg.de.
Lieberwirth H., Prof., Dr. Sci. (Eng.); Head of Institute for Minerals Processing Machines and Recycling Systems Technology (IART), Technische Universität Bergakademie Freiberg (TUBAF) Freiberg, Germany e-mail : Holger.Lieberwirth@iart.tu-freiberg.de, ORCID ID : 0000-0002-5207-4138;
Popov O., Dr.-Ing., Institute for Minerals Processing Machines and Recycling Systems Technology (IART), Technische Universität Bergakademie Freiberg (TUBAF) Freiberg, Germany, e-mail : Oleg.Popov@iart.tu-freiberg.de.

 

For contacts:
Bibliography:

1. Saroglou, H., Marinos, P., Tsiambaos, G. (2003). The anisotropic nature of selected metamorphic rocks from Greece. 10th ISRM Congress, 1019−1023.

2. Cacciari, P. P., Futai, M. M. (2019). Effects of mica content on rock foliation strength. International. Journal of Rock Mechanics and Mining Sciences, 124, DOI: 104143:10.1016/j. ijrmms.2019.104143.

3. Plinninger, R. J., Alber, M. (2015). Assessment of intact rock strength in anisotropic rock – Theory, experiences and implications on site investigation. EUROCK 2015 & 64th Geomechanics Colloquium, Schubert & Kluckner (eds), 297−302.

4. Ündül, Ö., Amann, F., Aysal, N., Plötze, M. (2015). Micro-Textural Effects on crack Initiation and Crack Propagation of andesitic Rocks. Engineering Geology. 193, 267−275. DOI: 10.1016/j.enggeo.2015.04.024.

5. Rybak J., Khayrutdinov M. M., Kuziev D. A., Kongar-Syuryun Ch. B., Babyr N. V. (2022). Prediction of the geomechanical state of the rock mass when mining salt deposits with stowing. Journal of Mining Institute, 253, 61−70. DOI: 10.31897/PMI.2022.2.

6. Popov, O., Talovina, I. (2020). Quantitative Microstructural Analysis and X-Ray Computed Tomography of Ores and Rocks—Comparison of Results. Minerals. 10(2), 1−18. DOI: 10.3390/min10020129.

7. Awuah-Offei, K. (2016). Energy efficiency in mining. A review with emphasis on the role of operators in loading and hauling operations. Journal of Cleaner Production, 117, 89−97. DOI: 10.1016/j.jclepro.2016.01.035.

8. Klein, B., Wan, C., Nadolski, S. (2018). Energy-efficient comminution: Best practices and future research needs. In: K. Awuah-Offei. Energy Efficiency in the Minerals Industry, 197−211. DOI: 10.1007/978−3-319−54199−0_11.

9. Ballantyne, G. R., Powell, M. S. (2014). Benchmarking comminution energy consumption for the processing of copper and gold ores. Minerals Engineering. 65, 109−114. DOI: 10.1016/j.mineng.2014.05.017.

10. Lisin, E., Kurdiukova, G. (2021). Energy Supply System Development Management Mechanisms from the Standpoint of Efficient Use of Energy Resources. IOP Conference Series: Earth and Environmental Science, 666(6), 062090. DOI: 10.1088/1755−1315/666/6/062090.

11. Milukov, I. A., Rogalev, A. N., Sokolov, V. P., Shevchenko, I. V. (2017). Efficiency improvement of technological preparation of power equipment manufacturing. Journal of Physics: Conference Series, 891(1), 012282. DOI: 10.1088/1742−6596/891/1/012282.

12. Hesse, M., Popov, O., Lieberwirth, H. (2016). Increasing efficiency by selective comminution. Minerals Engineering, 103−104. DOI: 10.1016/j.mineng.2016.09.003.

13. Grafe, B., Bravo, A. H., Hesse, M., Morgenstern, R., Rosin, K., Schlothauer, T., Talovina, I. W., Nikiforova, V. S. (2018). Innocrush: New solutions for highly selective process chains. Challenges and Prospects – 11th Russian-German Raw Materials Conference, 21−37.

14. Ivannikov, A., Chumakov, A., Prischepov, V., Melekhina, K. Express determination of the grain size of nickel-containing minerals in ore material. Materials Today: Proceedings, 2020, 38, стр. 2059−2062. DOI: 10.1016/j.matpr.2020.10.141.

15. Popov, O., Lieberwirth, H., Folgner, T. (2014). Quantitative Charakterisierung der Festgesteine zur Prognostizierung des Gesteinseinflusses auf relevante Produkteigenschaften und Systemkenngrößen. Teil 1: Anwendung der quantitativen Gefügeanalyse. AT Miner. Process., 07–08, 76–88.

16. Kravcov, A., Konvalinka, A., Vinnikov, V. A., Shibaev, I. A., Ivanov, P. N. (2017). On the issue of typical grain size assessment by the methods of broadband laser optoacoustics. Key Engineering Materials, 755, 212–218. DOI: 10.4028/www.scientific.net/ KEM.755.212M.

17. Nicco, E. Holley, P. Hartlieb, R. Kaunda and P. P. Nelson. (2018). Methods for characterizing Cracks Induced in Rocks. Rock Mechanics and Rock Engineering. 51, 2075−2093. DOI: 10.1007/s00603−018−1445-x.

18. Eremenko, V. A., Vinnikov, V. A., Kosyreva, M. A., Lagutin, D. V. (2022). Identification of rock jointing parameters by borehole imaging and interval geotechnical documentation of non-oriented drill cores. Gornyi Zhurnal, (1), 21–26. DOI: 10.17580/gzh.2022.01.04.

19. Chumakov, V. Prischepov, K. Melekhina, A. Ivannikov. (2021). Improving the control system of concentration plants based on express control of dissemination of magnetic minerals. IOP Conf. Series: Earth and Environmental Science, 684, 012005. DOI: 10.1088/1755−1315/684/1/012005.

20. Morgenstern, R., Konietzky, H. (2019). Thermomechanische Modellierung anisotroper Gesteine mittels Diskreter Elemente am Beispiel von Gneis. 79 Jahrestagung der deutschen geophysikalischen Gesellschaft (DGG), 46.

21. Schreiber, S. Beitrag zur Quantitativen Gesteinscharakterisierung zur Beurteilung von Gesteinen hinsichtlich Ihrer Festigkeiten. TU Bergakademie Freiberg: Freiberg.

22. Tichimirowa, M., Sergeev, S., Berger, H. J., Leonhardt, D. (2012). Inferring protoliths of high-grade metamorphic gneisses of the Erzgebirge using zirconology, geochemistry and comparison with lower-grade rocks from Lusatia (Saxothuringia, Germany), Contributions to Mineralogy and Petrology, 164, 375–396. DOI 10.1007/s00410−012−0742−8.

23. Klichowicz, M., Lieberwirth, H. (2016). Modelling of Realistic Microstructures as Key Factor for Comminution Simulations. In Proceedings of the XXVIII International Mineral Processing Congress (IMPC), 1–10.

24. Zhang, W., Sun, Q., Hao, S. (2016). Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment. Applied Thermal Engineering, 98, 1297–1304. DOI: 10.1016/j.applthermaleng.2016.01.010.

25. Costa, K. O. B., Xavier, G. C., Marvila, M.T, Alexandre, J., Azevedo, A. R. G., Monteiro, S. N. (2021). Influence of high temperatures on physical properties and microstructure of gneiss. Bulletin of Engineering Geology and the Environment, 80(9), 7069–7081. DOI: 10.1007/s10064−021−02362−8.

26. Rocha, G., Correia, B., Martins, M., Cabral, J. M. (2009). Dilatometer for characterization of thermal expansion of ceramic samples. 35th Annual Conf. of IEEE Industrial Electronics, 1853−1858. DOI: 10.1109/IECON.2009.5414829.

27. Evans, C. L., Wightman, E. M., Yuan, X. (2015). Quantifying mineral grain size distributions for process modelling using X-ray micro-tomography. Minerals Engineering, 82, 78–83. DOI: 10.1016/j.mineng.2015.03.026

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.