Stress–strain behavior model of disturbed rock mass with regard to anisotropy and discontinuities

Strength estimation of underground structures is an important problem in mine planning. Such computation involves mathematical modeling. This article proposes the mathematical model of the stress–strain behavior of disturbed rock mass with regard to its anisotropic properties. The model is also effective in rock mass with comparatively small discontinuities and internal stresses. The modeling uses the stochastic theory of potential and the mathematical theory of elasticity. An integrated stochastic potential of the stress–strain behavior of the anisotropic medium is constructed and used to formulate the boundary problems to find stresses and strains. The algorithm of the problem solution is developed. Unlike the boundary problems in classical elasticity, the determinate boundary conditions in the newly formulated problems are replaced by the stochastic conditions. As a result, it is possible to extend the model application range to rocks which are not absolutely uniform. Furthermore, the proposed integrated stochastic potential allows including the internal stresses of rocks in the solution. The capabilities of numerical methods grow. Efficiency of the algorithm is illustrated by solving the basic problem of elasticity for an anisotropic medium with a weakening in the form of an elliptical hole.

Keywords: theory of elasticity, rock failure, boundary problem, integrated potential, anisotropic body, stress–strain behavior, disturbed rock mass.
For citation:

Adigamov A. E., Yudenkov A. V. Stress–strain behavior model of disturbed rock mass with regard to anisotropy and discontinuities. MIAB. Mining Inf. Anal. Bull. 2021;(8):93103. [In Russ]. DOI: 10.25018/0236_1493_2021_8_0_93.

Acknowledgements:
Issue number: 8
Year: 2021
Page number: 93-103
ISBN: 0236-1493
UDK: 550.31, 69.04
DOI: 10.25018/0236_1493_2021_8_0_93
Article receipt date: 22.04.2021
Date of review receipt: 14.06.2021
Date of the editorial board′s decision on the article′s publishing: 10.07.2021
About authors:

A.E. Adigamov, Cand. Sci. (Eng.), Assistant Professor, National University of Science and Technology «MISiS», 119049, Moscow, Russia,e-mail: arckad.adigamow@yandex.ru,
A.V. Yudenkov, Dr. Sci. (Phys. Mathem.), Professor, Smolensk State Academy of Physical Culture, Sport and Tourism, 214018, Smolensk, Russia, e-mail: aleks-ydenkov@mail.ru.

For contacts:

A.E. Adigamov, e-mail: arckad.adigamow@yandex.ru.

Bibliography:

1. Rybak J., Gorbatyuk S., Bujanovna-Syuryun K., Khairutdinov A., Tyulyaeva Y., Makarov P. Utilization of mineral waste: a method for expanding the mineral resource base of a mining and smelting company. Metallurgist. 2021, vol. 64, pp. 851—861. DOI: 10.1007/s11015-02101065-5.

2. Khayrutdinov M. M., Kongar-Syuryun Ch. B., Tyulyaeva Yu. S., Khayrutdinov A. Cementless backfill mixtures based on water-soluble manmade waste. Bulletin of the Tomsk polytechnic university. Geo assets engineering. 2020, vol. 331, no. 11, pp. 30–36. [In Russ]. DOI: 10.18799/24131830/2020/11/2883.

3. Golik V. I., Razorenov Yu. I., Dmitrak Yu. V., Gabaraev O. Z. Safety improvement of the underground ore extraction considering mass geodynamics. Occupational Safety in Industry. 2019, no. 8, pp. 36—42. [In Russ]. DOI: 10.24000/0409-2961-2019-8-36-42.

4. Khayrutdinov M. M., Kongar-Syuryun Ch. B., Khayrutdinov A., Tyulyaeva Yu. S. Improving safety when extracting water-soluble ores by optimizing the parameters of the backfill mass. Occupational Safety in Industry. 2021, no. 1, pp. 53—59. [In Russ]. DOI: 10.24000/0409-29612021-01-53-59.

5. Olovyannyy A. G. Mathematical modeling of deformation processes and failure in fractured rock mass. Journal of Mining Institute. 2010, vol. 185, pp. 95—98. [In Russ].

6. Olovyannyy A. G. Mekhanika gornykh porod. Modelirovanie razrusheniy [Rock mechanics. Destruction simulation], Saint-Petersburg, 2012, 280 p.

7. Stead D., Eberhardt E., Coggan J. Developments in the characterization of rock slope deformation and failure using numerical modelling techniques. Engineering Geology. 2006, vol. 83, no. 1—3, pp. 217—235. DOI: 10.1016/j.enggeo.2005.06.033.

8. Kuzmin Yu. O. Recent geodynamics of a fault system. Physics of the Solid Earth. 2015, vol. 51, no 4. pp. 480—485. DOI: 10.1134/S1069351315040059.

9. Rybak J., Kongar-Syuryun Ch., Tyulyaeva Y., Khayrutdinov A., Akinshin I. Geomechanical substantiation of parameters of technology for mining salt deposits with a backfill. Mining Science. 2021, vol. 28, pp. 19—32. DOI: 10.37190/msc212802.

10. Khayrutdinov A. M., Kongar-Syuryun Ch. B., Kowalik T., Tyulyaeva Yu. S. Stress–strain behavior control in rock mass using different-strength backfill. MIAB. Mining Inf. Anal. Bull. 2020, no. 10, pp. 42—55. [In Russ]. DOI: 10.25018/0236-1493-2020-10-0-42-55.

11. Savin G. N. Raspredelenie napryazheniy okolo otverstiy [Distribution of stresses around holes], Kiev, Naukova dumka, 1968, 881 p.

12. Borshch-Komponiets V. I. Prakticheskaya mekhanika gornykh porod [Practical rock mechanics], Moscow, izd-vo «Gornaya kniga», 2013, 322 p.

13. Muskhelishvili N. I. Nekotorye osnovnye zadachi matematicheskoy teorii uprugosti [Some basic problems of the mathematical theory of elasticity], Moscow, Nauka, 1966, 707 p.

14. Kuritsyn S., Rasulov K. On a generalized Riemann problem for metaanalytic functions of the second type. Lobachevskii Journal of Mathematics. 2018, vol. 39, pp. 97—103. DOI: 10.1134/S1995080218010183.

15. Rasulov K. M. On the uniqueness of the solution of the Dirichlet boundary value problem for quasiharmonic functions in a non-unit disk. Lobachevskii Journal of Mathematics. 2018, vol. 39, pp. 142—145. DOI: 10.1134/S1995080218010237.

16. Rimskaya L. P., Skorodulina E. Yu. Systems of boundary value problems and singular integral equations in the static theory of elasticity. Uchyonye zapiski. Electronic scientific journal of the Kursk State University. 2013, no. 4 (28), pp. 10—14. [In Russ].

17. Kudo Y., Hashimoto K., Sano O., Nakagawa K. Relation between physical anisotropy and microstructures of granitlic rock in Japan. Proceedings 6th ISRM Congress on Rock Mech, Canada, 1987.

18. Lekhnitskiy G. S. Teoriya uprugosti anizotropnogo tela [The theory of elasticity of an anisotropic body], Moscow, Nauka, 1977, 416 p.

19. Ivlev D. D., Maksimova L. A., Mironov B. G. On the relations of the theory of translational ideal-plastic anisotropy in the case of plane deformation. Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela. 2011, no. 2, pp. 41—43. [In Russ].

20. Volodchenkov A. M., Yudenkov A. V. Hilbert stochastic problem for bianalytical functions on the common contour line. T-Comm: Telekommunikatsii i transport. 2017, vol. 11, no. 8, pp. 69—72. [In Russ].

21. Maksimova L. A., Yudenkov A. V. The theory of stochastic potential in the plane theory of elasticity. Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I.Ya. Yakovleva. 2015, no. 4 (26), pp. 134—142. [In Russ].

22. Yudenkov A. V., Volodchenkov A. M. Basic problems of the theory of elasticity of bodies with rectilinear anisotropy in stochastic potential theory. Uchyonye zapiski. Electronic scientific journal of the Kursk State University. 2013, no. 2(26), pp. 14—17. [In Russ].

23. Oksendal' B. Stokhasticheskie differentsial'nye uravneniya [Stochastic differential equations], Moscow, Mir, 2003, 300 p.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.