Modeling geomechanical processes in structurally nonuniform geomass for stability estimation of temporary roadways in coal mines

The article describes the numerical stress–state modeling of structurally nonuniform geomass at variation of the physical and mechanical properties and occurrence depth of a coal seam and enclosing rock mass in the influence zone of a temporary roadway. The stability criteria of the roadway are assumed to be the convergence of sidewalls, roof and floor of the roadway, and the shape and size of the zones of limit state and failure in rock mass in the vicinity of the roadway. Using the numerical modeling results, the stability factors are substantiated for underground openings in coal mines: coal seam strength, strength of dirt bands in coal seam and in roof and floor rock mass, variance of coal occurrence depths in different areas of plicative dislocations. The practical application of the modeling results makes it possible to take into account shapes and sizes of failure zones in adjacent rock mass of mine roadways in development and implementation of process designs aimed at prevention of hazardous industrial situations at the stages of construction and operation. The revealed functional connections between the convergence of sidewalls, roof and floor of mine roadways, sizes of limit state zones in geomass and the change of the physical and mechanical properties of coal and rocks will be used in creation of an intelligent system for the stability prediction in underground openings.

Keywords: modeling, coal seam, temporary roadway, geomass, variability of rock properties, convergence, stresses, limit state zones in rocks, strength of coal and rocks, mine roadway stability.
For citation:

Pavlova L. D., Fryanov V. N. Modeling geomechanical processes in structurally nonuniform geomass for stability estimation of temporary roadways in coal mines. MIAB. Mining Inf. Anal. Bull. 2025;(8):5-16. [In Russ]. DOI: 10.25018/0236_1493_2025_8_0_5.

Acknowledgements:

The study was supported by the Russian Science Foundation, Grant No. 25-21-20080, https://rscf.ru/project/25-21-20080/ and the grant of the Kemerovo Region – Kuzbass.

Issue number: 8
Year: 2025
Page number: 5-16
ISBN: 0236-1493
UDK: 622.834
DOI: 10.25018/0236_1493_2025_8_0_5
Article receipt date: 12.03.2025
Date of review receipt: 22.04.2025
Date of the editorial board′s decision on the article′s publishing: 10.07.2025
About authors:

V.N. Fryanov1, Dr. Sci. (Eng.), Professor, Professor, e-mail: zzz338@rdtc.ru, ORCID ID: 0000-0001-6803-458X,
L.D. Pavlova1, Dr. Sci. (Eng.), Professor, Head of Chair, e-mail: ld_pavlova@mail.ru, ORCID ID: 0000-0002-2480-8165,
1 Siberian State Industrial University (SibSIU), 654007, Novokuznetsk, Russia.

 

For contacts:

L.D. Pavlova, e-mail: ld_pavlova@mail.ru.

Bibliography:

1. Shtumpf G. G., Ryzhkov Yu. A., Shalamanov V. A., Petrov A. I. Fiziko-tekhnicheskie svoystva gornykh porod i ugley [Physical and technical properties of rocks and coals], Moscow, Nedra, 1994, 447 p.

2. Kurlenya M. V., Seryakov V. M., Eremenko A. A. Tekhnogennye geomekhanicheskie polya napryazheniy [Technogenic geomechanical stress fields], Novosibirsk, Nauka, 2005, 264 p.

3. Kurlenya M. V., Mirenkov V. E. Formulation of an algorithm for calculating constants characterizing a rock mass with a working. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2019, no. 4, pp. 3—9. [In Russ]. DOI: 10.15372/FTPRPI20190401.

4. Seryakov V. M., Krasnovsky A. A. Stress state of the development working support in an unstable rock mass. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2022, no. 6, pp. 43—52. [In Russ]. DOI: 10.15372/FTPRPI20220605.

5. Ilyasov B. T., Kulsantov R. V., Neugomonov S. S., Siluyanov N. V. Assessment of the stability of fixed workings based on numerical modeling by the finite-discrete element method. Gornyi Zhurnal. 2023, no. 1, pp. 118—123. [In Russ]. DOI: 10.17580/gzh.2023.01.20.

6. Chang J., He K., Pang D., Li D., Li C., Sun B. Influence of anchorage length and pretension on the working resistance of rock bolt based on its tensile characteristics. International Journal of Coal Science & Technology. 2021, vol. 8, no. 6, pp. 1384—1399. DOI: 10.1007/ s40789-021-00459-9.

7. Zhang C., Zhao Y., Han P., Bai Q. Coal pillar failure analysis and instability evaluation methods: A short review and prospect. Engineering Failure Analysis. 2022, vol. 138, article 106344. DOI: 10.1016/j.engfailanal.2022.106344.

8. Kuang Z., Qiu S., Li S., Du S., Huang Y., Chen X. A new rock brittleness index based on the characteristics of complete stress—strain behaviors. Rock Mechanics and Rock Engineering. 2021, vol. 54, no. 3, pp. 1109—1128. DOI: 10.1007/s00603-020-02311-z.

9. Sui Q., He M., He P., Xia M., Tao Z. State of the art review of the large deformation rock bolts. Underground Space. 2022, vol. 7, no. 3, pp. 465—482.

10. Zhabko A. V. Mechanics of plastic deformation of rocks under volumetric compression and the mechanism of rock bursts. Minerals and Mining Engineering. 2022, no. 4, pp. 47—63. [In Russ]. DOI: 10.21440/0536-1028-2022-4-47-63.

11. Frenelus W., Peng H., Zhan G. J. An insight from rock bolts and potential factors influencing their durability and the long-term stability of deep rock tunnels. Sustainability. 2022, vol. 14, article 10943. DOI: 10.3390/su141710943.

12. Erzhanov Zh. S., Saginov A. S., Gumenyuk G. N., Veksler Yu. A., Nesterov G. A. Polzuchest' osadochnykh gornykh porod. Teoriya i eksperiment [Creep of sedimentary rocks. Theory and experiment], Alma-Ata, Nauka, 1970, 208 p.

13. Proskuryakov N. M. Upravlenie sostoyaniem massiva gornykh porod [Rock massif state management], Moscow, Nedra, 1991, 368 p.

14. Efimov V. P. Application of the integral failure criterion for determining the tensile strength and crack resistance of rocks. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2019, no. 3, pp. 44—52. [In Russ]. DOI: 10.15372/FTPRPI20190306.

15. Linnik Yu. N., Linnik V. Yu., Zhabin A. B., Zich A. Interplay of strengths of nonuniformities in coal seams. MIAB. Mining Inf. Anal. Bull. 2023, no. 3, pp. 5—18. [In Russ]. DOI: 10.25018/0236_ 1493_2023_3_0_5.

16. Oden J. Konechnye elementy v nelineynoy mekhanike sploshnykh sred [Finite elements in nonlinear continuum mechanics], Moscow, Mir, 1976, 464 p.

17. Demin V. F., Aliev S. V., Yusupov Kh. A., Dolgonosov V. N., Portnov V. S., Ozhigin S. G. Improving the technology of anchor fastening of the marginal massif during the construction of mine workings in coal mines. Ugol'. 2022, pp. 56—60. [In Russ]. DOI: 10.18796/0041-5790-2022-9-56-60.

18. Razumov E. A., Venger V. G., Kalinin S. I., Zelyaeva E. A. Study of stability of development workings secured with roof bolting, which found themselves in difficult emergency situations during coal seam mining in Kuzbass mines. Ugol'. 2021, no. 11, рp. 13—18. [In Russ]. DOI: 10.18796/00415790-2021-11-13-18.

19. Demin V. F., Abeulov E. A., Akhmatnurov D. R., Musin R. A., Zamaliev N. M. Technology of using flexible anchors for mixed fastening in production workings. Ugol'. 2025, no. 2, pp. 100—105. [In Russ]. DOI: 10.18796/0041-5790-20252-100-105.

20. Fryanov V. N., Pavlova L. D., Tsvetkov A. B. Svidetel'stvo o registratsii programmy dlya EVM No. 2020618595 [Certificate of registration of computer program No. 2020618595], 2020. [In Russ].

21. Klishin V. I., Nikitenko S. M., Malakhov Y. V., Fryanov V. N., Pavlova L. D. Rock mass—Multifunction mobile roof support interaction in mining. Journal of Mining Science. 2021, vol. 57, no. 3, рp. 361—369. DOI: 1134/S1062739121030017.

22. Semenova I. E., Konstantinov K. N., Kulkova M. S. Assessment of the stress-strain state of a rock massif in the vicinity of deep underground workings using a set of instrumental and numerical methods. Gornyi Zhurnal. 2024, no. 1, рp. 22—28. [In Russ]. DOI: 10.17580/gzh.2024.01.04.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.