Modeling and optimization of energy intensity of basic flow processes at mines

Authors: Klyuev R.V.

The aim of this study is to analyze and predict energy intensity of a mine, and to reveal factors that influence power consumption with a view to optimizing energy usage. The subject of research is the Tyrnyauz Tungsten–Molybdenum Plant which practices both open-pit and underground method of mining in difficult geological conditions. This study uses statistical data on monthly energy consumption and ore production output. The implemented analysis shows the lack of stable linear correlation between the total energy consumption and the ore volume produced. Nonuniformity is found in energy use patterns at different production stages. The predicted values of energy consumption and energy intensity from the least square method display a decrease in the long view but need further verification. Considering a complex and multi-factor nature of energy consumption at the plant, the promising area of the further research is the integrated modeling using a combination of the statistical methods, machine learning and expert appraisement. Such models enable more accurate prediction of energy consumption, as well as optimization of energy resources control strategies, which, in its turn, can allow cost and energy improvement, as well as ensure mitigation of environmental impact.

Keywords: tungsten–molybdenum deposit, energy intensity, plant, ore mining, regression equation, heading, drilling, face-entry drivage.
For citation:

Klyuev R. V. Modeling and optimization of energy intensity of basic flow processes at mines. MIAB. Mining Inf. Anal. Bull. 2025;(4):170-181. [In Russ]. DOI: 10.25018/ 0236_1493_2025_4_0_170.

Acknowledgements:
Issue number: 4
Year: 2025
Page number: 170-181
ISBN: 0236-1493
UDK: 621.311
DOI: 10.25018/0236_1493_2025_4_0_170
Article receipt date: 29.12.2024
Date of review receipt: 03.02.2025
Date of the editorial board′s decision on the article′s publishing: 10.03.2025
About authors:

R.V. Klyuev, Dr. Sci. (Eng.), Assistant Professor, Professor, Moscow Polytechnic University, 107023, Moscow, Russia, e-mail: kluev-roman@rambler.ru, ORCID ID: 0000-0003-3777-7203.

 

For contacts:
Bibliography:

1. Zhukovskiy Yu. L., Suslikov P. K. Assessment of the potential effect of applying demand management technology at mining enterprises. Sustainable Development of Mountain Territories. 2024, vol. 16, no. 3, pp. 895—908. [In Russ]. DOI: 10.21177/1998-4502-2024-16-3-895-908.

2. Klyuev R. V. Reliability analysis of open-pit power supply system components. Mining Science and Technology (Russia). 2024, no. 9(2), pp. 183—194. [In Russ]. DOI: 10.17073/2500-0632-2024-03-254.

3. Petrov V. L., Pichuev A. V. Assessing the efficiency of measures to enhance electric power quality in variablefrequency drive for scraper conveyorsв. Mining Science and Technology (Russia). 2024, vol. 9, no. 1, pp. 60—69. [In Russ]. DOI: 10.17073/2500-0632-2024-01-198.

4. Zatsepina V., Astanin S. Investigation of new approaches to determining the level of reliability. 3rd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA). 2021, pp. 1184—1187. DOI: 10.1109/SUMMA53307.2021.9632086.

5. Klyuev R. V. System analysis of calculation methods for power supply systems in quarry points. Sustainable Development of Mountain Territories. 2024, vol. 16, no. 1, pp. 302—310. [In Russ]. DOI: 10.21177/1998-4502-2024-16-1-302-310.

6. Persteneva N. P., Tokarev Yu. A., Gorbunova O. A., Kravchenko O. V. Modeling of influence of different energy resources consumption on the economic development of the country. Ugol'. 2022, no. 9, pp. 53—55. [In Russ]. DOI: 10.18796/0041-5790-2022-9-53-55.

7. Savon D. Yu., Novoselov S. V., Borisova L. V., Safronov A. E. Trends in global energy consumption and the strategic role of coal in the fuel and energy balance of the Russian Federation. Ugol'. 2024, no. 5, pp. 86—91. [In Russ]. DOI: 10.18796/0041-5790-2024-5-86-91.

8. Zhukovskiy Y., Batueva D., Buldysko A., Shabalov M. Motivation towards energy saving by means of IoT personal energy manager platform. Journal of Physics: Conference Series. 2019, vol. 1333, no. 6, article 062033. DOI: 10.1088/1742-6596/1333/6/062033.

9. Gunkel P. A., Jacobsen H. K., Bergaentzlé C.-M., Scheller F. Andersen F. M. Variability in electricity consumption by category of consumer: The impact on electricity load profiles. International Journal of Electrical Power & Energy Systems. 2022, vol. 147, article 108852. DOI: 10.1016/j.ijepes.2022.108852.

10. Kumaritov A. M., Sokolova E. A., Sokolov A. A. Geoinformation system of ecological monitoring in inner-city industrial areas. Gornyi Zhurnal. 2016, no. 2, pp. 94—96. [In Russ]. DOI: 10.17580/ gzh.2016.02.18.

11. Sokolov A. A., Fomenko O. A., Ignatev I. V. Development of algorithms for control and control of electric power parameters based on information-measuring system data. Journal of Physics: Conference Series. 2022, vol. 2176, no. 1, article 012076. DOI: 10.1088/1742-6596/2176/1/012076.

12. Vyalkova S. A., Morgoeva A. D., Gavrina O. A. Development of a hybrid model for predicting the consumption of electrical energy for a mining and metallurgical enterprise. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 3, pp. 486—493. [In Russ]. DOI: 10.21177/1998-45022022-14-3-486-493.

13. Morgoeva A. D., Morgoev I. D., Klyuev R. V., Gavrina O. A. Forecasting of electric energy consumption by an industrial enterprise using machine learning methods. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2022, vol. 333, no. 7, pp. 115—125. [In Russ]. DOI: 10. 18799/24131830/2022/7/3527.

14. Kapansky A. A. Methods for solving the problems of evaluation and forecasting energy efficiency. Kazan state power engineering university bulletin. 2019, vol. 11, no. 2 (42), pp. 103—115. [In Russ].

15. Golik V. I. Promising direction of Sadon’s potential recovery (RNO-Alania). Sustainable Development of Mountain Territories. 2022, vol. 14, no. 1, pp. 68—75. [In Russ]. DOI: 10.21177/1998-45022022-14-1-68-75.

16. Martyushev N. V., Malozyomov B. V., Khalikov I. H., Kukartsev V. A., Kukartsev V. V., Tynchenko V. S., Tynchenko Ya. A., Qi M. Review of methods for improving the energy efficiency of electrified ground transport by optimizing battery consumption. Energies. 2023, vol. 16, no. 2, article 729. DOI: 10.3390/en16020729.

17. Malozyomov B. V., Martyushev N. V., Voitovich E. V., Kononenko R. V., Konyukhov V. Y., Tynchenko V., Kukartsev V. A., Tynchenko Y. A. Designing the optimal configuration of a small power system for autonomous power supply of weather station equipment. Energies. 2023, vol. 16, no. 13, article 5046. DOI: 10.3390/en16135046.

18. Zhou C., Chen X. Predicting China’s energy consumption: Combining machine learning with three-layer decomposition approach. Energy Reports. 2021, vol. 7, pp. 5086—5099. DOI: 10.1016/j. egyr.2021.08.103.

19. Yousaf A., Asif R. M., Shakir M., Rehman A. U., Adrees M. An Improved residential electricity load forecasting using a machine-learning-based feature selection approach and a proposed integration strategy. Sustainability. 2021, vol. 13, article 6199. DOI: 10.3390/su13116199.

20. Hamed M. M., Ali H., Abdelal Q. Forecasting annual electric power consumption using a random parameters model with heterogeneity in means and variances. Energy. 2022, vol. 255, article 124510. DOI: 10.1016/j.energy.2022.124510.

21. Kanté M., Li Y., Deng S. Scenarios analysis on electric power planning based on multi-scale forecast: A case study of Taoussa, Mali from 2020 to 2035. Energies. 2021, vol. 14, article 8515. DOI: 10.3390/en14248515.

22. Afanasiev V. Ya., Kraev V. M., Tikhonov A. I., Serebryakova G. V. Prospective ways to store energy. Ugol'. 2024, no. 8, pp. 124—129. [In Russ]. DOI: 10.18796/0041-5790-2024-8-124-129.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.