Modeling the disintegration process for ball mills using dem

In the presented work, the method of discrete elements was used, taking into account the processes of grinding the material, to describe the features and modes of operation of drum-type ball mills using typical ore. The applied method of discrete elements, which simulates the movement of balls and rocks in the processing equipment, makes it possible to understand the structure of the flow and the nature of material grinding. It also provides information on the energy dissipated in each collision of discrete particles. The phenomena of energy dissipation determine the nature and intensity of grinding, while the grinding process can be characterized using energy collision spectra. In the presented article, we investigate the quantitative structural changes in a drum-type ball mill at different drum rotation speeds. Modeling shows that changing the speed of rotation of the mill significantly affects the grinding process. To study the grinding process, experimental studies were carried out using a laboratory setup. Based on the data obtained, a three-dimensional dynamic model of the mill was built, including balls and source material. The results obtained can be used to develop a digital twin of technological equipment for predicting the current state of an object and issuing control actions to an automatic control system.

Keywords: Ball mill, grinding, mineral ore, disintegration, simulation, discrete element method, ore preparation, frequency drive, digital twin.
For citation:

Beloglazov I. I., Sabinin D. S., Nikolaev M. Yu. Modeling the disintegration process for ball mills using dem. MIAB. Mining Inf. Anal. Bull. 2022;(6−2):268—282. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_268.

Issue number: 6
Year: 2022
Page number: 268-282
ISBN: 0236-1493
UDK: 622.73.004.94
DOI: 10.25018/0236_1493_2022_62_0_268
Article receipt date: 14.01.2022
Date of review receipt: 01.04.2022
Date of the editorial board′s decision on the article′s publishing: 10.05.2022
About authors:

Beloglazov I. I., Cand. Sci. (Eng.), Associate Professor of department of Automation of Technological Processes and Production,,, St. Petersburg Mining University, St. Petersburg, 199106, Russia, St. Petersburg, Vasilievsky Island, 21 line 2 Beloglazov_ii @ pers;
Sabinin D. S., Master’s student of the Department of Automation of Technological Processes and Production of St. Petersburg Mining University, St. Petersburg, 199106, Russia, St. Petersburg, Vasilievsky Island, 21 line 2,;
Nikolaev M. Yu., Master’s student of the Department of Automation of Technological Processes and Production of St. Petersburg Mining University, St. Petersburg, 199106, Russia, St. Petersburg, Vasilievsky Island, 21 line 2,


For contacts:

Beloglazov Ilya Ilyich, e-mail:


1. Yudin K. A. An the mathematical modeling of material destruction processes in ball mills. Bulletin of Belgorod State Technological University named after V. G. Shukhov. 2011, vol. 1, pp. 91–94. [In Russ].

2. Barbanyagre V. D., Matveev A. F., Smal D. V., Moskvichev D. S. Process Modeling to Evaluate the Performance of Factory Pipe Ball Mills. Bulletin of the Belgorod State Technological University named after V. G. Shukhov. 2016, no. 5, pp. 144–146. [In Russ].

3. Chitalov L. S., Lvov V. V. Comparative assessment of tests of the working index of the ball mill Bond. MIAB. Mining Information-Analytical Bulletin. 2021, no. 1, pp. 130–145. [In Russ]. DOI: 10.25018/0236-1493-2021-1-0−130−145.

4. Baranov V. F. Review of world achievements and projects of ore dressing of the newest foreign plants. Enrichment of ores. 2008, no. 1, pp. 3–12. [In Russ].

5. Lvov V. V., Chitalov L. S. Modern trends in the design of processes and equipment for grinding of ores of non-ferrous metals. Non-ferrous Metals. 2020, vol. 10, pp. 20–26. DOI: 10.17580/tsm.2020.10.03.

6. Skorokhodov V. F., Khokhulia M. S., Opalev A. С. Applied aspects of application of computer simulation of hydrodynamics of multiphase media in studies of mineral separation processes in ore beneficiation. Physico-technical problems of mineral development. 2019, no. 2, pp. 139–153. [In Russ]. DOI: 10.15372/FTPRPI20190216.

7. Khanin S. I., Starchenko D. N., Mordovskaya O. S. Determination of strength parameters of power exchange devices of ball mills using computer-aided design systems. Science and Business: ways of development. 2019, no. 11(101), pp. 86–93. [In Russ].

8. le Roux J. D., Steinboeck A., Kugi A., Craig I. K. Steady-state and dynamic simulation of a grinding mill using grind curves. Minerals Engineering. 2020, vol. 152, pp. 1–21. DOI: 10.1016/j.mineng.2020.106208.

9. Popova L. P., Oleynik A. G. Modeling of process control system of enrichment using IDEF methodologies. Proceedings of Kola Scientific Center of RAS. 2010, no. 3(3), pp. 141–145. [In Russ].

10. Alexandrova T., Nikolaeva N., Afanasova A., Romashev A., Kuznetsov V. Justification of selective disintegration based on mineralogical and technological features of polymetallic ores. Minerals. 2021, no. 11, pp. 851–865. DOI:10.3390/min11080851.

11. Li Y., Bao J., Yu A., Yang R. ANN prediction of particle flow characteristics in a drum based on synthetic acoustic signals from DEM simulations. Chemical Engineering Science. 2021, vol. 246, pp. 1–10. DOI:10.1016/j.ces.2021.117012.

12. Vogel L., Peikert W. Fracture behavior of different materials — construction of a basic curve for fracture probability. Powder Technology. 2003, vol. 129, pp. 101–110. DOI:10.1016/S0032−5910(02)00217−6.

13. Shi F., Kojovic T. Validation of a model for impact fracture considering particle size effects. International Journal of Mineral Processing. 2007, vol. 82, pp. 156–163.

14. Boikov A. V., Saveliev R. V., Payor V. A., Potapov A. V. Part 2: Evaluation of the method of controlling the behavior of bulk materials in technological units using DEM. Review of CIS ferrous metallurgy. 2020, vol. 20, no. 2, pp. 3–6.

15. Beloglazov I. I., Ikonnikov D. A. Application of the Discrete Element Method for Modeling the Crushing of Rocks in a Jaw Crusher. Izvestiya vysshih uchebnyh zavedenij. Priborostroenie. 2016, vol. 59, no. 9, pp. 780–786. [In Russ]. DOI 10.17586/0021−3454 1.

16. Pérez-García E. M., Bouchard J., Poulin É. Systematic calibration of a simulated semi-autogenous/ball-mill grinding circuit. PapersOnLine. 2020, vol. 53(2), pp. 12026–12031. DOI:10.1016/j.ifacol.2020.12.737.

17. Asbjörnsson G., Tavares L. M., Mainza A., Yahyaei M. Different perspectives of dynamics in comminution processes. Minerals Engineering. 2022, vol. 176, pp. 1–9. DOI:10.1016/j.mineng.2021.107326.

18. Nkwanyana S., Loveday B. Addition of pebbles to a ball-mill to improve grinding efficiency. Part 2. Minerals Engineering. 2018, vol. 128, pp. 115–122. DOI:10.1016/j. mineng.2018.08.024.

19. Sharikov F. Yu., Krylov K. A. Mathematical model of optimal control of petroleum coke production in a rotary tube furnace. Theoretical bases of chemical technology. 2021, vol. 55, pp. 711–719.

20. Boykov A. V., Savelyov R. V., Payor V. A., Potapov A. Universal approach to calibration of parameters of DEM of bulk materials. Symmetry. 2021, vol. 6, no. 13, pp. 1–13.

21. Mazukhina S. I., Masloboev V. A., Makarov D. V. Thermodynamic modeling of hypergenic processes in the tailings of copper-nickel ore dressing at different temperatures and moisture regimes. Chemistry for Sustainable Development. 2021, vol. 29, no. 1, pp. 69–79. DOI: 10.15372/KhUR2021279.

22. Alexandrova T. N., Afanasova A. V., Alexandrov A. V. Microwave treatment to reduce the refractoriness of carbonaceous concentrates. Journal of Mining Science, 2020, vol. 1, no. 56, pp. 136–141.

23. Kuzmin O. V., Kuzmina V. V. Modeling of multistage processes of ore mineral processing using combinatorial polynomials of partitioning. Modern Technologies. System analysis. Modeling. 2017, no. 3(55), pp. 48–53. DOI: 10.26731/1813 — 9108.2017.3(55).48 —53.

24. Lvov V., Sischuk J., Chitalov L. Intensification of ball mill work index test using different methods. 17-I International Interdisciplinary Scientific Geoconference SGEM. 2017, vol. 17, pp. 857–864. DOI: 10.5593/sgem2017/11/S04.109.

25. Golubev V. O., Litvinova T. E. Dynamic modeling of the industrial cycle of gibbsite crystallization. Journal of Mining Institute. 2021, vol. 247, pp. 88–101. [In Russ]. DOI:10.31897/PMI.2021.1.10.

26. Sharikov F. Yu., Sharikov Yu. V., Krylov K. A. Selection of key parameters for calcination of green coke in a tubular rotary furnace to produce anode petcoke. ARPN Journal of Engineering and Applied Sciences. 2020, vol.15, pp. 2904–2912.

27. Baron L. I., Konyashin Yu. G., Kurbatov V. M. Crushability of rocks. Moscow: AN USSR, 1963, 169 p. [In Russ].

28. Golik V. I., Dmitrak Y. V. Interaction of ball loading bodies with material in mills. Vector GeoNauk. 2021, vol. 4, no. 1, pp. 20–27. [In Russ]. DOI: 10.24411/2619 — 0761 — 2021 — 10002.

29. Andreev E. E., Lvov V. V., Chitalov L. S. Energy saving using different grinding media. Journal of Mining Institute. 2013, vol. 202, pp. 141–142. [In Russ].

30. Dmitrak Y. V. Movement of the grinding load in ball mills. Vector GeoNauk. 2021, vol. 4, no. 1, pp. 28–36. [In Russ]. DOI: 10.24411/2619-0761-2021-10003.

31. Vasiliev B., Malkova Y. M., Mardashov D. V. Control system of a complete electric drive of the mill for grinding of gold-bearing ores. IEEE Conference of Russian Young Researchers in Electrical Engineering and Electronics. 2020, pp. 936–941. [In Russ]. DOI: 10.1109/EIConRus49466.2020.9039468.

32. Islamov Sh. R., Bondarenko A. V., Mardashov D. V. Justification of well killing technology for fractured carbonate reservoirs. Proceedings of Youth Technical Sessions: VI World Petroleum Council Youth Forum — Future Leaders Forum London: SRC Press / Taylor and Francis Group. 2019, pp. 256–264.

33. Golik V. I. Investigation of the influence of the properties of solids on the energy of grinding in mills. MIAB. Mining Information and Analytical Bulletin. 2021, no. 10, pp. 112–122. [In Russ]. DOI: 10.25018/0236_1493_2021_7_0_96.

34. Voronin V. A., Nepsha F. S. Simulation of the electric drive of the shearer to assess the energy efficiency indicators of the power supply system. Journal of Mining Institute. 2020, vol. 246, pp. 633–639. [In Russ]. DOI:10.31897/PMI.2020.6.5.

35. Kul’chitskii A. A. and Kashin D. A. The choice of a method for non-contact assessment of the composition of briquetted charge materials. Journal of Physics: Conference Series. 2019, vol. 1399, no.4, art. 044108. DOI: 10.1088/1742−6596/1399/4/044108.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.