Simulation of lithium battery degradation processes of the dump truck with electric drive

The paper presents the results of a model experiment to assess the traction battery degradation based on lithium-iron-phosphate cells, which is a part of electric dump truck traction drive. Possible versions of an electric dump truck traction drive are considered, a trend of using lithium cells as an onboard energy source is determined. The main mechanisms and reasons for the decrease lithium energy sources available capacity with their subsequent end of service life are given. To assess the extent of lithium battery degradation and identify the most resource-saving operating modes, the model of electric dump truck traction drive with lithiumiron-phosphate battery was synthesized. As a load cycle, records of real mining dump truck movement modes and the roadway were used. The ZT118 from Zoomlion with a curb weight and a maximum weight of 37 and 118 tons respectively was taken as the test model. Operation until the end of battery life was modeled under various operating modes with different depth of discharge — 18%, 36% and 72%. It has been found that the most resource-saving for a lithium battery is a short-term recharge after each stage of descent and ascent. Compared to long-term use and recharging at full discharge or the end of work shift, the proposed mode of operation increases the range until the end of battery life by 140 thousand km, which is 38%.

Keywords: mining dump truck, electric transport, lithium battery, chemical current source, lithium iron phosphate, degradation, energy recovery.
For citation:

Shchurov N. I., Dedov S. I., Shtang A. A., Wu Xiaogang. Simulation of lithium battery degradation processes of the dump truck with electric drive. MIAB. Mining Inf. Anal. Bull. 2023;(10-1):76—90. [In Russ]. DOI: 10.25018/0236_1493_2023_101_0_76.

Issue number: 10
Year: 2023
Page number: 76-90
ISBN: 0236-1493
UDK: 621.355
DOI: 10.25018/0236_1493_2023_101_0_76
Article receipt date: 18.04.2023
Date of review receipt: 19.07.2023
Date of the editorial board′s decision on the article′s publishing: 10.10.2023
About authors:

Shchurov N. I.1, Dr. Sci. (Eng.), professor, e-mail:, ORCID ID: 0000-0002-5459-9544;
Dedov S. I.1, assistant, e-mail:, ORCID ID: 0000-0003-4750-3927;
Shtang A. A.1, Cand. Sci. (Eng.), Assistant Professor, e-mail:, ORCID ID: 0000-0001-9772-1784;
Wu Xiaogang2, Dr. Sci. (Eng.), professor, e-mail:, ORCID ID: 00000002-1830-0437;
1 Novosibirsk State Technical University, 630073, Novosibirsk, Russia;
2 Harbin University of Science and Technology;


For contacts:

Dedov S. I., e-mail:


1. Lindgren L., Grauers A., Ranggård J., Mäki R. Drive-Cycle Simulations of BatteryElectric Large Haul Trucks for Open-Pit Mining with Electric Roads. Energies. 2022. Vol. 15, no. 4871. pp. 1−19. DOI: 10.3390/en15134871.

2. Cruzat J. V., Valenzuela M. A. Modeling and evaluation of benefits of trolley assist system for mining trucks. IEEE Trans. Ind. Appl. 2018. Vol. 54. pp. 3971–3981. DOI: 10.1109/ tia.2018.2823261.

3. Kartashov A., Harutyunyan G., Kosolapov A., Shkarupelov E. Justification of the concept of creating a perspective dump truck. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 779. pp. 1−10. DOI: 10.1088/1757−899x/779/1/012028.

4. Dedov S. I., Shtang A. A., Abramov E. Yu. Investigation of battery degradation in the traction unit of mining dump trucks. MIAB. Mining Inf. Anal. Bull. 2022. no. 12. p. 102−114. [In Russ.] DOI: 10.25018/0236_1493_2022_122_0_102.

5. Zhuravlev A. G., Isakov M. V. Experimental studies of the operation of mining dump trucks under operating conditions. MIAB. Mining Inf. Anal. Bull. 2020. no. 3. p. 530−542. [In Russ.] DOI: 10.25018/0236-1493-2020-31−0-530−542.

6. Bigel N. V. Development of new types of mining equipment at JSC “BELAZ” using alternative energy sources. Globus: Available at: razrabotka-novyh-tipov-karernoj-tehniki-na-oao-belaz-s-primeneniem-alternativnyhistochnikov-energii-10684/, 2020.

7. Dubinkin D. M., Kartashov A. B., Arutyunyan G. A., Buzunov N. V., Kirill P. S., Yalyshev A. V. Current state of engineering and technology in the field of mining dump trucks with energy storage. MIAB. Mining Inf. Anal. Bull. 2020. no. 6 (152). p. 31−42. [In Russ.] DOI: 10.26730/1816-4528-2020-6-31−42.

8. Edge J. S., O’Kane S., Prosser R., Kirkaldy N. D., Patel A. N., Hales A., Offer G. J. Lithium ion battery degradation: what you need to know. Physical Chemistry Chemical Physics 2021. no. 23 (14). pp. 8200−8221. DOI: 10.1039/d1cp00359c.

9. Shchurov N. I., Dedov S. I., Malozyomov B. V., Shtang A. A., Andriashin S. N. Degradation of Lithium-Ion Batteries in an Electric Transport Complex. Energies. 2021. Vol. 14. iss. 23. Art. 8072. pp. 1−33. DOI: 10.3390/en14238072.

10. Zhao Y., Yin Y. Hu, Choe S. Y. Electrochemical-thermal modeling of lithium plating/stripping of Li(Ni0.6Mn0.2Co0.2)O2/ Carbon lithium-ion batteries at subzero ambient temperatures. J. Power Sources. 2019. Vol. 418. pp. 61−73. DOI: 10.1016/j. jpowsour.2019.02.001.

11. Zhang Y., Li X., Su L., Li Z., Liaw B. Y., Zhang J. Lithium Plating Detection and Quantification in Li-Ion Cells from Degradation Behaviors. ECS Trans. 2017. Vol. 75. pp. 37−50. DOI: 10.1149/07523.0037ecst.

12. Rauhala T., Jalkanen K., Romann T., Lust E., Omar N., Kallio T. Low-temperature aging mechanisms of commercial graphite/LiFePO4 cells cycled with a simulated electric vehicle load profile A post-mortem study. J. Energy Storage. 2018. Vol. 20. P. 344−356. DOI: 10.1016/j.est.2018.10.007.

13. Jung R., Strobl P., Maglia F., Stinner C., Gasteiger H. A. Temperature Dependence of Oxygen Release from LiNi 0.6 Mn 0.2 Co 0.2 O 2 (NMC622) Cathode Materials for Li-Ion Batteries. J. Electrochem. Soc. 2018. Vol. 165. pp. 2869−2879. DOI: 10.1149/2.1261811jes.

14. Konishi H., Yuasa T., Yoshikawa M. Thermal stability of Li1-yNixMn (1-x)/2Co(1x)/2O2 layer-structured cathode materials used in Li-Ion batteries. J. Power Sources. 2011. Vol. 196. pp. 6884−6888. DOI: 10.1016/j.jpowsour.2011.01.016.

15. Feng Y., Dong Z., Yang J., Cheng R. Performance modeling and cost-benefit analysis of hybrid electric mining trucks. 12th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA). 2016. pp. 1−6. DOI: 10.1109/ MESA.2016.7587102.

16. Terblanche P. J., Kearney M. P., Knights P. F. Potential of on-board energy recovery systems to reduce the costs of diesel–electric mine truck haulage. Mining Technology. 2018. P. 1−14. DOI: 10.1080/25726668.2018.1451611.

17. Shchurov N. I., Shtang A. A., Dedov S. I., Latyshev R. N. The use of a combined energy storage to increase the battery life of an electric vehicle. Power supply. 2022. no. 2. p. 24−33.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.