Modeling the mine motor by means of the lattice equivalent circuit with the sinusoidal current sources

Authors: Blanc A. V.

In the mining industry, the induction motors are widely used. Moreover, they work in very difficult conditions. Therefore, their reliability and safety are of particular importance. Improving the electric machines is related not only with increasing their power, but also with the most efficient use of this power. Improving the existing electric machines and creating new machines require comprehensive researching the electromagnetic field in their functional volumes. Now, the numerical methods are extremely widely used for modeling electromagnetic fields. However, the analytical methods remain in demand too. In analytical researching the electromagnetic field of the electric machines, the cascade equivalent circuits take up the special place. The lattice equivalent circuit is the new grade of the cascade equivalent circuit. In the paper, the lattice equivalent circuit of the mine squirrel-cage induction motor is considered which is synthesized on the base of the Cartesian rectangular model. The model is characterized by property averaging in the zones of tooth and slots. In the lattice equivalent circuit, the sinusoidal current sources are field sources. The lattice equivalent circuit of the mine induction motor is created using Multisim 10. Comparing the lattice equivalent circuit with the numerical simulation indicates the correctness of modeling.

Keywords: Mine electric equipment, Mine electric motors, Mine induction motors, Cascade equivalent circuits, Lattice equivalent circuits, Electromagnetic field, Ampere’s circuital law, Faraday’s law of electromagnetic induction, Circuit theory, Quadripole theory.
For citation:

Blanc A. V. Modeling the mine motor by means of the lattice equivalent circuit with the sinusoidal current sources. MIAB. Mining Inf. Anal. Bull. 2022;(12-2):58—69. [In Russ]. DOI: 10.25018/0236_1493_2022_122_0_58.

Acknowledgements:
Issue number: 12
Year: 2022
Page number: 58-69
ISBN: 0236-1493
UDK: 621.313.333.2:622
DOI: 10.25018/0236_1493_2022_122_0_58
Article receipt date: 24.01.2022
Date of review receipt: 27.09.2022
Date of the editorial board′s decision on the article′s publishing: 10.11.2022
About authors:

Blanc A. V., Cand. Sci. (Eng.), the associate professor in the Department of the Theoretical Electrical Engineering, https://orcid.org/0000-0003-0582-1257, Novosibirsk State Technical University, 20 Prospekt K. Marksa, 630073, Novosibirsk, Russia, e-mail: alblances@ yandex.ru.

For contacts:
Bibliography:

1. Qaseer L., de León F., Purushothaman S. Combined field and circuit theories in squirrel-cage induction motors based on micro-T circuit model. Applied Computational Electromagnetics Society Journal. 2011, vol. 26, no. 7, pp. 551—560.

2. Qaseer L., Purushothaman S., de León F., Closed-form analysis of squirrel-cage induction motors with anisotropic modeling of stator and rotor. IEEE Transactions on Energy Conversion. 2012, vol. 27, no. 3, pp. 553—560. DOI: 10.1109/TEC.2012.2193128.

3. Sarapulov F. N., Frizen V. E., Shvydkiy E. L., Smol’yanov I. A. Mathematical modeling of a linear-induction motor based on detailed equivalent circuits. Elektrotehnika. 2018, no. 4, pp. 58—63. [In Russ].

4. Sarapulov F. N., Smol’yanov I. A. Research of drive linear induction motor for conveyor train. Elektromehanika. 2019, vol. 62 no. 1, pp. 39—43. [In Russ]. DOI: 10.17213/0136-3360-2019-1-39−43.

5. Tarchutkin N. V., Smol’yanov I. A., Shmakov E. I. Simulation of thermal modes of a linear induction machine in MATLAB. Problemy upravlenia i modelirovania v slozhnyh sistemah (PUMSS-2019). 2019, pp. 501—504. [In Russ].

6. Inkin A. I. The electromagnetic fields and the parameters of the electric machines, Novosibirsk, UKEA,2002,464 p. [in Russ].

7. Litvinov B. V., Davidenko O. B. Standard cells and cascade equivalent circuits of electric machines, Novosibirsk, NSTU,2008,215 p. [in Russ].

8. Qaseer L. Micro-T circuit model for double and single sided induction heating systems. Applied Computational Electromagnetics Society Journal. 2010, vol. 25, no. 2, pp. 713—721.

9. Qaseer L. Analysis of double and single sided induction heating systems by layer theory approach. Journal of Electromagnetic Analysis and Applications. 2010, vol. 2, no. 7, pp. 403—410. DOI: 10.4236/jemaa.2010.27052.

10. Qaseer L. Micro-T circuit model for the analysis of cylindrical induction heating systems. IEEE Transactions on Energy Conversion. 2010, vol. 25, no. 4, pp. 1021—1027. DOI: 10.1109/TEC.2010.2046642.

11. Sarapulov F. N., Sarapulov S. F., Frizen V. E., Bolotin K. E., Uskov I. A. Multifunctional smelter based on induction crucible furnace and its modeling. Energetika Innovatsionnye napravlenia v energetike. CALS-tehnologii v energetike. 2014, no. 1, pp. 154—163. [In Russ].

12. Uskov I. A., Frizen V. E., Shvydkiy E. L. Research into electromagnetic side stirrer. Voprosy elektrotehnologii. 2015, no. 3 (8), pp. 5—9. [In Russ].

13. Torchio R., Di Rienzo L., Codecasa L. Stochastic PEEC method based on polynomial chaos expansion. IEEE Transactions on Magnetics. 2019, vol. 55, no. 6, pp. 1—4. DOI: 10.1109/TMAG.2019.2908588.

14. Torchio R. A volume PEEC formulation based on the cell method for electromagnetic problems from low to high frequency. IEEE Transactions on Antennas and Propagation. 2019, vol. 67, no. 12, pp. 7452—7465. DOI: 10.1109/TAP.2019.2927789.

15. Lombardi L., Romano D., Antonini G. Efficient numerical computation of full-wave partial elements modeling magnetic materials in the PEEC method. IEEE Transactions on Microwave Theory and Techniques. 2020, vol. 68, no. 3, pp. 915—925. DOI: 10.1109/ TMTT.2019.2953590.

16. Cao Y. S., Jiang L. J., Ruehli A. E. Distributive radiation and transfer characterization based on the PEEC method. IEEE Transactions on Electromagnetic Compatibility. 2015, vol. 57, no. 4, pp. 734—742. DOI: 10.1109/TEMC.2014.2382176.

17. Le Q., Evans T., Peng Y., Mantooth H. A. PEEC method and hierarchical approach towards 3D multichip power module (MCPM) layout optimization. IEEE International Workshop on Integrated Power Packaging. 2019, pp. 131—136. DOI: 10.1109/ IWIPP.2019.8799081.

18. Inkin A. I., Aliferov A. I., Blanc A. V. The standard basic cell multipoles of the lattice equivalent circuits of the plane-parallel electromagnetic field. Elektrichestvo. 2014, no. 1, pp. 56—60. [In Russ].

19. Inkin A. I., Aliferov A. I., Blanc A. V. The standard cells and the lattice equivalent circuits of the induction magnetoelectric systems with the moving conductive element. Elektrichestvo. 2015, no. 12, pp. 38—44. [In Russ].

20. Inkin A. I., Blanc A. V. The lattice equivalent circuits for 2D and 3D analysis of electromagnetic field in electrical devices, Novosibirsk, NSTU,2020,202 p.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.