Modeling heat and mass exchange processes in ore pile in heap leaching under low ambient temperature

The article presents the computational algorithm developed for modeling metal leaching process in cross section of gold ore pile. The model allows predicting processes of heat and mass convection in the pile body and includes equations of convective heat transfer with regard to possible phase transitions of leaching solution and the solution temperature changes during feeding, as well as equations of convective diffusion of leaching solution and dissolved metal. A separate stage is an approximate solution for diffusion of the same components in lump ore. Overall contributions of diffusion flows from all lump ore in the reaction zone are used as sources and sinks in the related equations of convective diffusion. The model input data are physicochemical, geometrical and operational parameters such as: content of ore to be leached, cyanide concentration and feed rate, size distribution of lump ore and cross dimension of pile. The model enables prediction of both metal recovery and reagent consumption using available input parameters. Modeling can provide justified data for both pre-feasibility study and optimization of operation conditions.

Keywords: head and mass transfer during phase transitions, diffusion, percolation, mathematical modeling, chemical reagents, heap leaching, ore pile, cyanides, freezing and thawing.
For citation:

Kurilko A. S., Popov V. I. Modeling heat and mass exchange processes in ore pile in heap leaching under low ambient temperature. MIAB. Mining Inf. Anal. Bull. 2021;(1):111-119. [In Russ]. DOI: 10.25018/0236-1493-2021-1-0-111-119.

Issue number: 1
Year: 2021
Page number: 111-119
ISBN: 0236-1493
UDK: 551.345:502.55
DOI: 10.25018/0236-1493-2021-1-0-111-119
Article receipt date: 07.10.2019
Date of review receipt: 01.06.2020
Date of the editorial board′s decision on the article′s publishing: 10.12.2020
About authors:

A.S. Kurilko1, Dr. Sci. (Eng.), Chief Researcher,
V.I. Popov1, Cand. Sci. (Eng.), Senior Researcher, e-mail:,
1 Chersky Mining Institute of the North, Siberian Branch, Russian Academy of Sciences, 677000, Yakutsk, Republic of Sakha (Yakutia), Russia

For contacts:

V.I. Popov, e-mail:


1. Kovlekov I. I., Sherstov V.A., Varlakov P. S., Dmitriev A. A. Experience of heap leaching of gold ore in Yakutia. Nauka i obrazovanie. 2005, no 1, pp. 21—24. [In Russ].

2. Киселев В. В., Каймонов М. В., Попов В. И. Promising trends in in-situ leaching in gold placer mines in permafrost region. MIAB. Mining Inf. Anal. Bull. 2018, no 12, pp. 177—184. [In Russ]. DOI: 10.25018/0236-1493-2018-12-0-177-184.

3. Vorob'ev A. E., Pogodin M. A., Chekushina T. V. Classification of gold leaching methods under negative ambient temperatures. MIAB. Mining Inf. Anal. Bull. 1999, no 2, pp. 76—80. [In Russ].

4. Altushkin I. A., Levin V. V., Korol' Yu.A., Karev B. V. Experience of in-situ leaching in the Gumny copper deposit. Tsvetnye metally. 2019, no 5, pp. 17—32. [In Russ]. DOI: 10.17580/ tsm.2019.05.03.

5. Arens V. Zh., Fazlullin M. I., Khrulev A. S., Khcheyan G. Kh. Experience of borehole hydraulic mining of buried permafrost gold placers. Gornyi Zhurnal. 2019, no 1, pp. 41—46. [In Russ]. DOI: 10.17580/gzh.2019.01.09.

6. Smith K. E. Cold weather gold heap leaching operational methods. Journal of the Minerals, Metals and Materials Society. 1997. Vol. 49. No 4. Pp. 20—23.

7. McBride D., Gebhardt J., Croft T., Cross, M. Modeling the hydrodynamics of heap leaching in sub-zero temperatures. Minerals Engineering. 2016. Vol. 90, Pp. 77—88.

8. McBride D., Gebhardt J., Croft T., Cross M. Heap leaching: Modelling and forecasting using SFD technology. Minerals. 2018. Vol. 8. No 1. Pp. 107—118.

9. McBride D. Preferential flow behavior in unsaturated packed beds and heaps: Incorporated into CFD model. Hydrometallurgy. 2017. Vol. 171. Pp. 177—185.

10. Masloboev V., Seleznev S., Svetlov A., Makarov D. Hydrometallurgical proctssing of low —grade sulfide ore and mine waste in the arctic region: Perspectives and challenges. Minerals. 2018. Vol. 8. No 10. Pp. 436—442.

11. Popov V. I., Kaymonov M. V. Determination of optimal heap leaching parameters under negative ambient temperatures. MIAB. Mining Inf. Anal. Bull. 2017, no S24, pp. 292—298. [In Russ]. DOI: 10.25018/0236-1493-2017-11-24-292-298.

12. Popov V. I. A new method of dealing with freezing in a temperature spectrum. Trudy mezhdunarodnoy nauchno-prakticheskoy konferentsii (g. Yakutsk, 14—17 iyunya 2005 g.) [International Conference and Workshop Proceedings on Problems and Prospects in Integrated Mineral Mining in Permafrost Zone (Yakutsk, June 14—17, 2005)], Vol. 2. Yakutsk, Izd-vo instituta merzlotovedeniya SO RAN, 2005, pp. 57—59.

13. Lundin L. Hydraulic properties in an operational model of frozen soil. Hydrology. 1990. Vol. 118. Pp. 289—310.

14. Hansson K., Simunek J., Mizogguchi M., Lundin L. C., van Genuchten M. Nh. Water flow and heat transport in frozen soil: Numerical solution and freeze-thaw applications. Vadose Zone Journal. 2004. Vol. 3. Pp. 693—704.

15. Karslou G., Eger D. Teploprovodnost' tverdykh tel [Thermal conduction of solids], Moscow, Nauka, 1964, pp. 487.

16. Kovalev N. V., Kovalev V. N., Kholodnov V.A. Modification of a compressible fluid core model to describe gold leaching from a mixture of ore fractions. Izvestiya Sankt-Peterburgskogo gosudarstvennogo tekhnologicheskogo instituta (tekhnicheskogo universiteta). 2015, no 31, pp. 99–104. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.