Modeling wind and air temperature effect on propagation of smoke and toxic gases during fire on metro bridge

The transportation system in Moscow enjoys active and intense development, including the underground space. The Moscow Metro features construction of new lines—Big Circle Line, Sokolnicheskaya, Solntsevskaya, Lyublino-Dmitrovskaya, Troitskaya, RublevoArkhangelskaya and Biryulevskaya Lines, as well as many connection lines and engine house access tracks. Some metro lines built on ground surface often include metro bridges which are the objects of heightened danger when on fire. The metro bridges are the subject of this research. There are currently no norms and procedures to assess safety of approved design choices on metro bridges. The validation of the project-specific technical specifications and design choices used ANSYS CFD software. For determining initial and boundary conditions for the modeling, the climate research was performed in the location region of the metro bridge. The modeling studied the gas dynamics of toxic combustion products CO, CO2 and HCl, and smoke in different sites of the metro bridge. The studies show that situation is the worst at zero wind. Wind accelerates removal of toxic gases and smoke. Removal of hazardous impurities runs differently in different sites. For example, the modeling finds out that toxic substances and smoke accumulate at the metro portals equipped with concrete enclosures. Such areas require extra activities to be developed to ensure the fire safety. The calculations determine the air temperature effects on natural ventilation of a metro bridge on fire.

Keywords: metro, computer modeling, ventilation, climatic factors, fire, smoking.
For citation:

Kobylkin S. S., Kaledina N. O., Kobylkin A. S. Modeling wind and air temperature effect on propagation of smoke and toxic gases during fire on metro bridge. MIAB. Mining Inf. Anal. Bull. 2022;(11):147-162. [In Russ]. DOI: 10.25018/0236_1493_2022_11_0_147.

Issue number: 11
Year: 2022
Page number: 147-162
ISBN: 0236-1493
UDK: 624.63-52:622.44
DOI: 10.25018/0236_1493_2022_11_0_147
Article receipt date: 01.07.2022
Date of review receipt: 19.09.2022
Date of the editorial board′s decision on the article′s publishing: 10.10.2022
About authors:

S.S. Kobylkin1, Dr. Sci. (Eng.), Professor, e-mail:, ORCID ID: 0000-0002-2626-208X,
N.O. Kaledina1, Dr. Sci. (Eng.), Professor, e-mail:,
A.S. Kobylkin, Cand. Sci. (Eng.), Senior Researcher, Institute of Problems of Comprehensive Exploitation of Mineral Resources of Russian Academy of Sciences, 111020, Moscow, Russia, e-mail:, ORCID ID: 0000-0002-1512-890Х,
1 Mining Institute, National University of Science and Technology «MISiS», 119049, Moscow, Russia.


For contacts:

S.S. Kobylkin, e-mail:


1. Kulikova E. Yu., Konyukhov D. S. Accident risk monitoring in underground space development. MIAB. Mining Inf. Anal. Bull. 2022, no. 1, pp. 97–103. [In Russ]. DOI: 10.25018/ 0236_1493_2022_1_0_97.

2. Kulikova E. Yu., Potapova E. V. Synthesis of managerial decisions to the effect of underground construction safety. MIAB. Mining Inf. Anal. Bull. 2022, no. 2, pp. 62–69. [In Russ]. DOI: 10.25018/0236_1493_2022_2_0_62.

3. Kulikova E., Ivannikov A. Geographic information systems in geological monitoring during the construction of urban underground structures. Monitoring of Geological Processes and Ecological Condition of the Environment. Conference Proceedings, Monitoring 2019. 2019, pp. 1—5. DOI: 10.3997/2214-4609/201903192.

4. Ryzhova L. V., Titova T. S., Gendler S. G. Ensuring environmental safety during the construction and operation of tunnels in residential areas. Procedia Engineering. 2017, vol. 189, рр. 404–410. DOI: 10.1016/j.proeng.2017.05.064.

5. Krasyukova E., Aynbinder I., Ivannikov A. A rational approach to the management of underground mining in complex hydrogeological and geomechanical conditions based on a risk assessment. IOP Conference Series: Earth and Environmental Science. 2021, vol. 684, no. 1, article 012006. DOI: 10.1088/1755-1315/684/1/012006.

6. Maslak V., Boytsov D., Danilov A., Levina E., Gendler S. Innovative engineering solutions for improving operational safety and efficiency of subways with two-way tunnels. Procedia Engineering. 2016, vol. 165, pp. 214–223.

7. Kaledina N. O., Kobylkin S. S., Kobylkin A. S., Kondrev R. S., Beleckij D. N. Evaluation of the effectiveness of natural ventilation of a metro bridge in the event of a cable fire, taking into account protective structures from climatic precipitation. MIAB. Mining Inf. Anal. Bull. 2021, no. 10-1, pp. 17—28. [In Russ]. DOI: 10.25018/0236_1493_2021_101_0_17.

8. Surikov A. V., Leshenyuk N. S. Raschet vidimosti v pomeshcheniyah v usloviyah pozhara s primeneniem programmnogo kompleksa FDS. Vestnik Universiteta grazhdanskoy zashchity MCHS Belarusi. 2018, vol. 2, no. 2, pp. 147—160. [In Russ].

9. Kobylkin S. S., Timchenko A. N., Kobylkin A. S. Use of computer simulation in the selection of operating parameters for the dust extractor built into the roadheader. Occupational Safety in Industry. 2021, no. 3, pp. 21—27. [In Russ]. DOI: 10.24000/0409-2961-2021-3-21-27.

10. Markova T. V., Zhluktov S. V. Development of gorenje models in FlowVision PC. Inzhenernye sistemy-2012. Trudy Mezhdunarodnogo foruma [Engineering Systems-2012: Proceedings of the International Forum], Moscow, MAKS Press, 2012, pp. 89—95.

11. Yu H. Comparison of the spreading characters of fire products in the typical metro stations of Washington, D.C. and Guangzhou. Urban Rail Transit. 2021, vol. 7, pp. 269–284. DOI: 10.1007/s40864-021-00160-9.

12. Jiaqiang Han, Zihao Wang, Pengqiang Geng The effect of blockage and tunnel slope on smoke spread and ceiling temperature distribution in a natural-ventilated metro depot. Energy and Buildings. 2021, vol. 253, article 111540. DOI: 10.1016/j.enbuild.2021.111540.

13. Kubinyecz V., Teodosiu C. Review of numerical studies on ventilation systems for subway networks in emergency situations. IOP Conference Series: Earth and Environmental Science. 2021, vol. 664, no. 1, article 012093. DOI: 10.1088/1755-1315/664/1/012093.

14. Król A., Król M. Some tips on numerical modeling of airflow and fires in road tunnels. Energies. 2021, vol. 14, no. 9, article 2366. DOI: 10.3390/en14092366.

15. Kubinyecz F.-V., Teodosiu C. Verification of ventilation system efficiency in a curved subway tunnel in case of fire using numerical modeling. Proceedings of 10th International Conference on Energy and Environment (CIEM 2021). 2021. DOI: 10.1109/CIEM52821.2021.9614790.

16. Król A., Król M. Study on hot gases flow in case of fire in a road tunnel. Energies. 2018, vol. 11, no. 3, article 590. DOI: 10.3390/en11030590.

17. Juraeva M., Ryu K. J., Jeong S.-H., Song D. J. Influences of the train-wind and air-curtain to reduce the particle concentration inside a subway tunnel. Tunnelling and Underground Space Technology. 2016, vol. 52, pp. 23—29. DOI: 10.1016/j.tust.2015.11.008.

18. Flores-Herrera L. A., Sandoval-Pineda J. M., Silva-Rivera U. S., Tamayo-Meza P. A., RiveraBlas R. CFD simulation of obstructed ventilation ports in a subway tunnel section. International Journal of Simulation Modelling. 2017, vol. 16, no. 3, pp. 386—398. DOI: 10.2507/IJSIMM16(3)2.380.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.