Modeling interaction of rock mass and chemically anchored rock bolts to assess their load-bearing capacity in different fixation conditions

The article discusses structural and operational characteristics of chemically anchored rock bolts used to improve stability of underground excavations and to intensify primary mining. It is concluded that practical modeling of the rock bolt–rock mass system stability should include the strength and deformation characteristics of rocks, as well as the other attributes of the rockbolting efficiency, namely, the load-bearing capacity of the rock bolt rod material and the rock bolt anchorage strength. The article describes the stress–strain analysis of the rock bolt–rock mass system under static loading at different values of the rock bolt anchorage strength in a borehole. The results of the finite-element model analysis implemented in ANSYS are presented. The mechanism of the strength loss and the quantification of the stability factor in the rock bolt–rock mass system are described using the Mohr–Coulomb failure criterion. The calculations used the data from Yalevsky Mine of SUEK-Kuzbass. Based on the modeling results, it is proved to be feasible to quantify load-bearing capacity of rock bolt elements at the nonuniform anchorage strength distribution along their length.

Keywords: underground excavations, rock mass, rockbolting, strength and deformation characteristics, load-bearing capacity, anchorage strength, numerical methods, ANSYS.
For citation:

Trofimov V. A., Filippov Yu. A., Zakorshmenniy I. M., Kharitonov I. L., Blokhin D. I. Modeling interaction of rock mass and chemically anchored rock bolts to assess their load-bearing capacity in different fixation conditions. MIAB. Mining Inf. Anal. Bull. 2023;(1):35-48. [In Russ]. DOI: 10.25018/0236_1493_2023_1_0_35.

Acknowledgements:
Issue number: 1
Year: 2023
Page number: 35-48
ISBN: 0236-1493
UDK: 622.281.74
DOI: 10.25018/0236_1493_2023_1_0_35
Article receipt date: 03.07.2022
Date of review receipt: 05.10.2022
Date of the editorial board′s decision on the article′s publishing: 10.12.2022
About authors:

V.A. Trofimov1, Dr. Sci. (Eng.), Head of Laboratory, e-mail: asas_2001@mail.ru, ORCID ID: 0000-0001-9010-189X,
Yu.A. Filippov1, Cand. Sci. (Eng.), Senior Researcher, e-mail: filippov.yury@gmail.com, ORCID ID: 0000-0003-3347-677X,
I.M. Zakorshmenniy1, Dr. Sci. (Eng.), Leading Researcher, e-mail: iosif-54@mail.ru, ORCID ID: 0000-0001-9153-673X,
I.L. Kharitonov, Cand. Sci. (Eng.), Deputy Technical Director, JSK «SUEK-Kuzbass», 652507, Leninsk-Kuzneckiy, Russia, e-mail: kharitonovil@suek.ru,
D.I. Blokhin1, Cand. Sci. (Eng.), Senior Researcher, e-mail: dblokhin@yandex.ru, ORCID ID: 0000-0002-4652-661X,
1 Institute of Problems of Comprehensive Exploitation of Mineral Resources of Russian Academy of Sciences, 111020, Moscow, Russia.

 

For contacts:

D.I. Blokhin, e-mail: dblokhin@yandex.ru.

Bibliography:

1. Zubov V. P. Applied technologies and current problems of resource-saving in underground mining of stratifi ed deposits. Gornyi Zhurnal. 2018, no. 6, pp. 77—83. [In Russ]. DOI: 10.17580/ gzh.2018.06.16.

2. Dudin A. A., Vakhrushev E. V., Zlobin S. Е., Prokofiev A. S., Paikin D. I., Lysenko M. V. Substantiation of the possibility of using mine working roof bolting in conditions of watered and weakened rocks. Ugol’. 2018, no. 12(1113), pp. 21—26. [In Russ]. DOI: 10.18796/0041-5790-2018-12-21-25.

3. Kachurin N. M., Nogih V. R. Interaction underslung transport units with rocks and providing safety and stability of mining workings. News of the Tula state university. Sciences of Earth. 2015, no. 4, pp. 65—75. [In Russ].

4. Yanak A. S. The problem of anchoring the mine workings of coal mines. MIAB. Mining Inf. Anal. Bull. 2005, no. 3, pp. 96—97. [In Russ].

5. Uvarova V. A., Kostrykin A. P., Kopytin V. A. Control of strength parameters of steel polymer anchoring of rocks. Occupational Safety in Industry. 2017, no. 9, pp. 14—18. [In Russ]. DOI: 10.24000/0409-2961-2017-9-14-18.

6. Yokota Y., Zhaoa Z., Shang J., Nie W., Date K., Iwano K., Okada Y. Effect of bolt configuration on the interface behaviour between a rock bolt and bond material. A comprehensive DDA investigation. Computers and Geotechnics. 2019, vol. 105, pp. 116—128. DOI: 10.1016/j. eo.2018.09.017.

7. Lisjak A., Young-Schultz T., Li B., He L., Tatone B. S. A., Mahabadi М. A novel rockbolt formulation for a GPU-accelerated, finite-discrete element method code and its application to underground excavations. International Journal of Rock Mechanics and Mining Sciences. 2020, vol. 134, article 104410. DOI: 10.1016/j.ijrmms.2020.104410.

8. Blokhin D. I., Zakorshmennyi I. M., Kubrin S. S., Kharitonov I. L., Kholmyansky M. L. Modeling interaction of suspended monorail rock bolt support and rock mass. MIAB. Mining Inf. Anal. Bull. 2020, no. 9, pp. 25—39. [In Russ]. DOI: 10.25018/0236-1493-2020-9-0-25-39.

9. Cui L., Dong Y., Sheng Q., Shen Q. New numerical procedures for fully-grouted bolt in the rock mass with slip and non-slip cases at the rock-bolt interface. Construction and Building Materials. 2019, vol. 204, pp. 849—863. DOI: 10.1016/j.conbuildmat.2019.01.219.

10. Stepanov Ya. A. Adaptation and development of the finite element method for calculating the parameters of the stress-strain state of a coal rock massif. Bulletin of the Kuzbass State Technical University. 2011, no. 4, pp. 31—34. [In Russ].

11. Vlasov A. N., Volkov-Bogorodsky D. B., Znamensky V. V., Mnushkin M. G. Finite element modeling of geomechanics and geophysics problems. Vestnik MGSU. 2012, no. 2, pp. 52—65.

12. Brinkgreve R. B. J., Bakker H. L. Non-linear finite element analysis of safety factors. Proceedings of the 7th International Conference on Computer Methods and Advances in Geomechanics, Cairns, Australia. 1991, pp. 1117—1122.

13. Gospodarikov A. P. Nonlinear math model development and numerical model of strain deformed rock mass conditions prognosis. Journal of Mining Institute. 2016, vol. 219, pp. 382—386. [In Russ].

14. Sas I. E., Cherepetskaya E. B., Pavlov I. A. Solving problems in geomechanics: Comparison of the Fidesys strength analysis system and the Plaxis software package. Key Engineering Materials. 2017, vol. 755, pp. 328—332. DOI: 10.4028/www.scientific.net/KEM.755.328.

15. Trofimov V. A., Kubrin S. S., Filippov Yu. A., Kharitonov I. L. Numerical modeling of stress–strain state for host rock mass and thick gently dipping coal seam after mining completion in extraction panel. MIAB. Mining Inf. Anal. Bull. 2019, no. 8, pp. 42—56. [In Russ]. DOI: 10.25018/0236-1493-2019-08-0-42-56.

16. Zakharov V. N., Trofimov V. A., Filippov Y. A. Numerical modeling of rock bolt support in case of rheological behavior of rock mass in deformation. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2021, no. 6, pp. 6—17. [In Russ]. DOI: 10.15372/FTPRPI20210601.

17. Mirnyy A. Y., Ter-Martirosyan A. Z. Scope of application of modern mechanical models of soils. Geotekhnika. 2017, no. 1, pp. 20—26. [In Russ].

18. Juvinall R. C. Engineering Considerations of stress, strain, and strength. New York: McGraw-Hill, 1967. 580 p.

19. Cao J. C., Zhang N., Wang S. Y., Qian D. Y., Xie Z. Z. Physical model test study on support of super pre-stressed anchor in the mining engineering. Engineering Failure Analysis. 2020, vol. 118, article 104833. DOI: 10.1016/j.engfailanal.2020.104833.

20. Chang J., He K., Pang D., Li D., Li C., Sun B. Influence of anchorage length and pretension on the working resistance of rock bolt based on its tensile characteristics. International Journal of Coal Science & Technology. 2021, vol. 8, no. 6, pp. 1384—1399. DOI: 10.1007/s40789-021-00459-9.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.