Modification of properties of rock-forming minerals during flotation

Examination and modification of properties of rock-forming minerals toward more efficient separation of valuable components from barren rock in the course of processing is a topical problem considering the worse quality of ore, very fine dissemination of minerals in barren rocks and the higher content of barren rock particles showing the increased flotation response, which contaminate and downgrade concentrate. The chosen methods to treat the surface of rock-forming minerals were processing by low temperatures and by reagents. The test subject was the monomineral quartz and calcite fractions and sulfide gold-bearing ore. The studies of the low-temperature effect on the value of free energy of mineral surface show its increase by 18.04 mN/m and 20.94 mN/m in quartz and calcite as the barren rock minerals, respectively. The increase results from the growth of the polar component, which enables reduction in the barren rock yield in flotation concentrates. The studies of the low temperature effect on the flotation of monomineral fractions of quartz and calcite show the decrease in their recovery by 1.73% and 2.08%, respectively. The reagent mode proposed for flotation of sulfide gold-bearing ore with high content of rock-forming minerals is based on the combination of the organic and inorganic depressants.

Keywords: flotation, low temperature effect, sulfide gold-bearing ore, wetting angle, free surface energy, rock-forming minerals, depressants.
For citation:

Aleksandrova T. N., Prokhorova E. O. Modification of properties of rock-forming minerals during flotation. MIAB. Mining Inf. Anal. Bull. 2023;(12):123-138. [In Russ]. DOI: 10.25018/0236_1493_2023_12_0_123.

Acknowledgements:

The study was supported by the Russian Science Foundation, Project No. 23-47-00109.

Issue number: 12
Year: 2023
Page number: 123-138
ISBN: 0236-1493
UDK: 622.7
DOI: 10.25018/0236_1493_2023_12_0_123
Article receipt date: 03.05.2023
Date of review receipt: 15.08.2023
Date of the editorial board′s decision on the article′s publishing: 10.11.2023
About authors:

T.N. Aleksandrova1, Dr. Sci. (Eng.), Professor, Corresponding Member of Russian Academy of Sciences, Head of Chair, e-mail: Aleksandrova_TN@pers.spmi.ru, ORCID ID: 0000-0002-3069-0001,
E.O. Prokhorova1, Graduate Student, e-mail: s225074@stud.spmi.ru, ORCID ID: 0000-0003-4208-3281,
1 Empress Catherine II Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

E.O. Prokhorova, e-mail: s225074@stud.spmi.ru.

Bibliography:

1. Litvinenko V. S., Sergeev I. B. Innovations as a factor in the development of the natural resources sector. Studies on Russian Economic Development. 2019, vol. 30, pp. 637—645. DOI: 10.1134/S107570071906011X.

2. Ponomarenko T., Nevskaya M., Jonek-Kowalska I. Mineral resource depletion assessment: Alternatives, problems, results. Sustainability. 2021, vol. 13, no. 2, article 862. DOI: 10.3390/ su13020862.

3. Volkov A. V., Galyamov A. L., Lobanov K. V. The mineral wealth of the Circum-Arctic Belt. Arctic: Ecology and Economy. 2019, no. 1(33), pp. 106—117. [In Russ]. DOI: 10.25283/22234594-2019-1-106-117.

4. Evdokimov A. N., Fokin V. I., Shanurenko N. K. Gold-rare metal and associated mineralization in the western part of Bolshevik Island, Severnaya Zemlya archipelago. Journal of Mining Institute. 2023, pp. 1—11. [In Russ]. DOI: 10.31897/PMI.2022.94.

5. Aleksandrova T. N., Nikolaeva N. V., Afanasova A. V., Romashev A. O., Aburova V. A., Prokhorova E. O. Extraction of low-dimensional structures of noble and rare metals from carbonaceous ores using low-temperature and energy impacts at succeeding stages of raw material transformation. Minerals. 2023, vol. 13, no. 1, article 84. DOI: 10.3390/min13010084.

6. Tang X., Chen Y., Liu K., Peng Q., Zeng G., Ao M., Li Z. Reverse flotation separation of talc from molybdenite without addition of depressant: Effect of surface oxidation by thermal pre-treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2020, vol. 594, article 124671. DOI: 10.1016/j.colsurfa.2020.124671.

7. Aleksandrova T. N., О’Connor C. Processing of platinum group metal ores in Russia and South Africa: current state and prospects. Journal of Mining Institute. 2020, vol. 244, pp. 462—473. [In Russ]. DOI: 10.31897/pmi.2020.4.9.

8. Duryagina A. M., Talovina I. V., Lieberwirth H., Ilalova R. K. Morphometric parameters of sulphide ores as a basis for selective ore dressing. Journal of Mining Institute. 2022, vol. 256, pp. 527—538. [In Russ]. DOI: 10.31897/PMI.2022.76.

9. Mehdilo A., Irannajad M. Surface modification of ilmenite and its accompanied gangue minerals by thermal pretreatment: Application in flotation process. Transactions of Nonferrous Metals Society of China. 2021, vol. 31, no. 9, pp. 2836—2851. DOI: 10.1016/S10036326(21)65697-2.

10. Rogov V. V. Features of morphology of parтicles of а skeleton cryogenic eluvium. Earth’s Cryosphere. 2000, no. 3(4), pp. 67—73. [In Russ].

11. Yang X., Jiang A., Li M. Experimental investigation of the time-dependent behavior of quartz sandstone and quartzite under the combined effects of chemical erosion and freeze-thaw cycles. Cold Regions Science and Technology. 2019, vol. 161, pp. 51—62. DOI: 10.1016/j. coldregions.2019.03.008.

12. Zhang J., Deng H., Taheri A., Ke B., Liu C., Yang X. Degradation of physical and mechanical properties of sandstone subjected to freeze-thaw cycles and chemical erosion. Cold Regions Science and Technology. 2018, vol. 155, pp. 37—46. DOI: 10.1016/j.coldregions. 2018.07.007.

13. Zanin M., Ametov I., Grano S., Zhou L., Skinner W. A study of mechanisms affecting molybdenite recovery in a bulk copper/molybdenum flotation circuit. International Journal of Mineral Processing. 2009, vol. 93, no. 3-4, pp. 256—266. DOI: 10.1016/j.minpro.2009.10.001.

14. Fu X., Gao Y., Han H., Gao Z., Wang L., Sun W., Yue T. Quantization of the hydration and dodecylamine adsorption characteristics of hematite and quartz surface active sites to forecast the flotation behavior of minerals. Minerals Engineering. 2022, vol. 183, no. 3, article 107571. DOI: 10.1016/j.mineng.2022.107571.

15. Boampong L. O., Rafati R., Haddad A. S. Modelling of carbonate rock wettability based on surface charge and calcite dissolution. Fuel. 2023, vol. 331, article 125856. DOI: 10.1016/j. fuel.2022.125856.

16. Kuznetsov V. V., Aleksandrova T. N. Development of methods for determining the floatability of minerals for effective design of flotation technology. MIAB. Mining Inf. Anal. Bull. 2022, no. 10-1, pp. 145—154. [In Russ]. DOI: 10.25018/0236_1493_2022_101_0_145.

17. Sygusch J., Rudolph M. A contribution to wettability and wetting characterisation of ultrafine particles with varying shape and degree of hydrophobization. Applied Surface Science. 2021, vol. 566, article 150725. DOI: 10.1016/j.apsusc.2021.150725.

18. Xie L., Wang J., Lu Q., Hu W., Yang D., Qiao C., Peng X., Peng Q., Wang T., Sun W., Liu Q., Zhang H., Zeng H. Surface interaction mechanisms in mineral flotation: Fundamentals, measurements, and perspectives. Advances In Colloid And Interface Science. 2021, vol. 295, article 102491. DOI: 10.1016/j.cis.2021.102491.

19. Timothy N. Hunter, Erica J. Wanless, Graeme J. Jameson. Effect of esterically bonded agents on the monolayer structure and foamability of nano-silica. Colloids and Surfaces A Physicochemical and Engineering Aspects. 2009, vol. 334, no. 1, pp. 181—190. DOI: 10.1016/j. colsurfa.2008.10.039.

20. Feng D., Nguyen A. V. Effect of contact angle and contact angle hysteresis on the floatability of spheres at the air-water interface. Advances In Colloid And Interface Science. 2017, vol. 248, pp. 69—84. DOI: 10.1016/j.cis.2017.07.031.

21. Afanasova A. V., Aburova V. A., Prokhorova E. O., Lushina E. A. Investigation of the influence of depressors on flotation-active rock-forming minerals in sulphide goldbearing ore flotation. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 161—174. [In Russ]. DOI: 10.2501 8/0236_1493_2022_62_0_161.

22. Babenkov E. D. Ochistka stochnykh vod koagulyantami [Wastewater treatment with coagulants], Moscow, Nauka, 1997, 356 p.

23. Deng Y., Xu L., Lu H., Wang H., Shi Y. Direct measurement of the contact angle of water droplet on quartz in a reservoir rock with atomic force microscopy. Chemical Engineering Science. 2018, vol. 177, pp. 445—454. DOI: 10.1016/j.ces.2017.12.002.

24. Krasovsky A. N., Shmykov A. Ju., Filippov V. N., Vasiljeva I. V., Mjakin S. V., Osmolovskaya N. A., Borisova S. V., Kurochkin V. E. Study of the surface properties of coatings comprising a mixture of polystyrene and poly (styrenesulfonic acid) on the fused silica glass. Nauchnoe priborostroenie. 2009, vol. 19, no. 4, pp. 51—58. [In Russ].

25. Opanasenko O. N., Krutko N. P., Zhigalova O. L., Luksha O. V. Influence of the chemical structure of cation surfactants on the wetting process of rock-forming minerals. Proceedings of the National Academy of Sciences of Belarus, Chemical Series. 2019, vol. 55, no. 2, pp. 142—148. [In Russ]. DOI: 10.29235/1561-8331-2019-55-2-142-148.

26. Sun H., Wang S., Fei L., Cao Z., Zhong H., Ma X. The selective flotation separation of rhodochrosite against quartz and calcite with dicarboxylic amino acid-based surfactants as a novel collector. Minerals Engineering. 2022, vol. 182, article 107559. DOI: 10.1016/j.mineng. 2022.107559.

27. Gzogyan S. R. Magnetite and quartz surface condition in ferro-magnetic suspension. MIAB. Mining Inf. Anal. Bull. 2019, no. 5, pp. 189—199. [In Russ]. DOI: 10.25018/0236-14932019-05-0-189-199.

28. Shi Q., Feng Q., Zhang G., Deng H. A novel method to improve depressants actions on calcite flotation. Minerals Engineering. 2014, vol. 55, pp. 186—189. DOI: 10.1016/j.mineng. 2013.10.010.

29. Bunin I. Zh., Ryazantseva M. V., Anashkina N. E. Modification of physical and chemical properties of calcium-containing minerals under exposure to high-voltage nanosecond pulses. Vzaimodeystvie izlucheniy s tverdym telom: Materialy 13-y Mezhdunarodnoy konferentsii [Interaction of radiation with a solid: Proceedings of the 13th International Conference], Minsk, BGU, 2019, pp. 218—220. [In Russ].

30. Chen Y., Feng B., Yan H., Zhang L., Zhong C., Wang T., Wang H., Xu. L. Adsorption and depression mechanism of an eco-friendly depressant dextrin onto fluorite and calcite for the efficiency flotation separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022, vol. 635, article 127987. DOI: 10.1016/j.colsurfa.2021.127987.

31. Zhao T., Jiang L. Contact angle measurement of natural materials. Colloids and Surfaces B: Biointerfaces. 2018, vol. 161, pp. 324—330. DOI: 10.1016/j.colsurfb.2017.10.056.

32. Gao Z., Li C., Sun W., Hu Y. Anisotropic surface properties of calcite: a consideration of surface broken bonds. Colloids and Surfaces A Physicochemical and Engineering Aspects. 2017, vol. 520. DOI: 10.1016/j.colsurfa.2017.01.061.

33. Wang X., Zhang Q. Role of surface roughness in the wettability, surface energy and flotation kinetics of calcite. Powder Technology. 2020, vol. 371, pp. 55—63. DOI: 10.1016/j. powtec.2020.05.081.

34. Mikhlin Y., Karacharov A., Tomashevich Y., Shchukarev A. Cryogenic XPS study of fastfrozen sulfide minerals: Flotation-related adsorption of n-butyl xanthate and beyond. Journal of Electron Spectroscopy and Related Phenomena. 2016, vol. 206, pp. 65—73. DOI: 10.1016/ j.elspec.2015.12.003.

35. Yakovleva T. A., Romashev A. O., Mashevsky G. N. Digital technologies for optimizing the dosing of flotation reagents during flotation of non-ferrous metal ores. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 175—188. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_175.

36. Danilov V. E., Korolev E. V., Ayzenshtadt A. M., Strokova V. V. Features of the calculation of free energy of the surface based on the model for interfacial interaction of Owens-WendtRabel-Kaelble. Stroitel'nye Materialy. 2019, no. 11, pp. 66—72. [In Russ]. DOI: 10.31659/0585430X-2019-776-11-66-72.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.