Bibliography: 1. Schuster K., Furche M., Shao H., Hesser J., Hertzsch J.-M., Gräsle W., Rebscher D. Understanding the evolution of nuclear waste repositories by performing appropriate experiments — selected investigations at Mont Terri rock laboratory. Advances in Geosciences. 2019, vol. 49, pp. 175—186. DOI: 10.5194/adgeo-49-175-2019.
2. Kim J. S., Kwon S. K., Sanchez M., Cho G. C. Geological storage of high level nuclear waste. KSCE Journal of Civil Engineering. 2011, vol. 15, pp. 721—737. DOI: 10.1007/s12205-011-0012-8.
3. Bossart P., Bernier F., Birkholzer J., Bruggerman C., Connoly P., Dewonck S., Fukaya M., Herfort M., Jensen M., Matray J., Mayor J., Moeri A., Oyama T., Schuster K., Shigeta N., Vietor T., Wieczorek K. Mont Terri rock laboratory, 20 years of research: introduction, site characteristics and overview of experiments. Swiss Journal of Geosciences. 2017, vol. 110, pp. 3—22. DOI: 10.1007/s00015-016-0236-1.
4. Morozov O. A., Rastorguev A. V., Neuvazhaev G. D. Assessing the State of the Geological Environment at the Yeniseyskiy Site (Krasnoyarsk Region). Radioactive waste. 2019, no. 4(9), pp. 46—62. [In Russ]. DOI: 10.25283/2587-9707-2019-4-46-62.
5. Saveleva E. A. International cooperation in radioactive waste disposal in crystalline rocks (crystalline club). Radioactive waste. 2019, no. 2(7), pp. 58—64. [In Russ]. DOI: 10.25283/2587-97072019-2-58-64.
6. Rumynin V. G. Experience of studying the clay masses and crystalline core-areas as geological environment for RW final isolation. Radioactive waste. 2017, no. 1(1), pp. 44—55. [In Russ].
7. Zhukov V. S., Kuzmin Y. O. The influence of fracturing of the rocks and model materials on P-wave propagation velocity: Experimental studies. Fizika Zemli. 2020, no. 4, pp. 39—50. [In Russ]. DOI: 10.31857/S0002333720040109.
8. Kuznetsov Yu. I. Acoustic logging as a possible method for studying rock fracturing. Karotazhnik. 2017, no. 2(272), pp. 95—107. [In Russ].
9. Averin A. P. Investigation of attenuation parameters during ultrasound observations. MIAB. Mining Inf. Anal. Bull. 2004, no. 10, pp. 66—70. [In Russ].
10. Dolgirev S. S., Kirichenko YU. V. New approaches to calculating the permeability of fractured zones and reservoirs of the fractured-cavernous type. Karotazhnik. 2018, no. 6(288), pp. 85—93. [In Russ].
11. Schuster K., Amann F., Yong S., Bossart P., Connolly P. High-resolution mini-seismic methods applied in the Mont Terri rock laboratory. Mont Terri Rock Laboratory, 20 Years. 2017, pp. 215—233. DOI: 10.1007/978-3-319-70458-6_11.
12. Schuster K. Mini-Seismic Methods for the in-situ characterization of clay rocks—Examples from URL Meuse/Haute-Marne (France) and HADES URF (Belgium). Geomechanics for Energy and the Environment. 2019, vol. 17, pp. 16—28. DOI: 10.1016/j.gete.2018.09.005.
13. Bayuk I. O., Ryzhkov V. I. Determination of the parameters of cracks and pores of carbonate reservoirs according to wave acoustic logging. Seismic technologies. 2010, no. 3, pp. 32—42. [In Russ].
14. Gik L. D. Methods for studying cracks and pores of rocks based on acoustic logging data. Physical Mesomechanics. 2008, vol. 11, no. 4, pp. 67—73. [In Russ].
15. Zaharov V. N., Averin A. P. Mechanisms of attenuation of wave processes in ultrasonic observations. MIAB. Mining Inf. Anal. Bull. 2005, no. 7, pp. 95—100. [In Russ].
16. Savich A. I., Koptev V. I., Nikitin V. N., YAshchenko Z. G. Seysmoakusticheskie metody izucheniya massivov skal'nykh porod [Seismoacoustic methods for studying rock massifs], Moscow, Nedra, 1969, 239 p.
17. Gubaidullin A. A., Boldyreva O. Y., Dudko D. N. Velocity and attenuation of linear waves in porous media saturated with gas and its hydrate. Journal of Applied Mechanics and Technical Physics. 2022, vol. 63, pp. 599—605. DOI: 10.1134/S002189442204006X.
18. Voznesenskii A. S., Krasilov M. N., Kutkin Y. O., Tavostin M. N. Reliability increasing of an estimation of rocks strength by non-destructive methods of acoustic testing due to additional informative parameters. The Minerals, Metals & Materials Series. 2019, pp. 411—423. DOI: 10.1007/978-3030-05749-7_41.
19. Nikolenko P. V., Zaitsev M. G. Effect of discontinuities on elastic wave velocities in high-stress rock samples: Experimental research using ultrasonic interferometry. Journal of Mining Science. 2022, vol. 58, pp. 936—944. DOI: 10.1134/S1062739122060084.
20. Chou C.-P., Hannaford B. Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Transactions on Robotics and Automation. 1996, vol. 12, no. 1, pp. 90—102. DOI: 10. 1109/70.481753.
21. Soleymani R., Khajehsaeid H. A mechanical model for McKibben pneumatic artificial muscles based on limiting chain extensibility and 3D application of the network alteration theories. International Journal of Solids and Structures. 2020, vol. 202, pp. 620—630. DOI: 10.1016/j.ijsolstr.2020.06.036.
22. Tianyang Li, Zizhen Wang, Yu Jeffrey Gu, Ruihe Wang, Yuzhong Wang Experimental study of fracture structure effects on acoustic logging data using a synthetic borehole model. Journal of Petroleum Science and Engineering. 2019, vol. 183, article 106433. DOI: 10.1016/j.petrol.2019.106433.
23. Nikolenko P. V., Zaitsev M. G. Surface roughness estimation and rock type identification by ultrasonic and optical techniques. MIAB. Mining Inf. Anal. Bull. 2022, no. 3, pp. 5—15. [In Russ]. DOI: 10.25018/0236_1493_2022_3_0_5.