Modular ultrasonic logging system: Design and measurements in physical model of borehole

A series of the original constructional solutions proposed for the design of an acoustic borehole probe are aimed to improve efficiency and reliability of measurement. The design implemented the technology of pneumatic hold-down and the quasi-point dry acoustic contact at the rock–transducer interface (in that case, the protector had a curved surface and a small area which repeated the borehole well geometry), which enabled optimum (in terms of energy loss) conditions for the inlet and intake of ultrasonic vibrations. For testing reliability of the hardware system, a physical model of a borehole was created, with intact areas, single cracks and crack systems. The experimental investigation has found out that ultrasonic logging with the designed probe allows stable detection of both single discontinuities and their systems in rocks. The stable behavior of the ultrasonic wave velocity in the intact rock area indicates that the developed holddown mechanism and the shape of the protector of the piezoelectric transducer ensures uniform contact conditions along the whole length of boreholes in the course of measurements.

Keywords: probe, logging, ultrasound, control, fracturing, contact conditions, rock mass.
For citation:

Chumakov A. A., Nikolenko P. V., Gupalo V. S. Modular ultrasonic logging system: Design and measurements in physical model of borehole. MIAB. Mining Inf. Anal. Bull. 2024;(3):119-129. [In Russ]. DOI: 10.25018/0236_1493_2024_3_0_119.

Acknowledgements:
Issue number: 3
Year: 2024
Page number: 119-129
ISBN: 0236-1493
UDK: 622.02:539.2
DOI: 10.25018/0236_1493_2024_3_0_119
Article receipt date: 22.08.2023
Date of review receipt: 25.01.2024
Date of the editorial board′s decision on the article′s publishing: 10.02.2024
About authors:

A.A. Chumakov1, Graduate Student, e-mail: aachumakov@misis.ru, ORCID ID: 0009-0006-3697-3527,
P.V. Nikolenko1, Cand. Sci. (Eng.), Assistant Professor, e-mail: p.nikolenko@misis.ru, ORCID ID: 0000-0002-5126-6576,
V.S. Gupalo, Dr. Sci. (Eng.), Head of Laboratory, Nuclear Safety Institute of the Russian Academy of Sciences «IBRAE RAN», 115191, Moscow, Russia, e-mail: gupalo@ibrae.ac.ru, ORCID ID: 0000-0002-2228-1275,
1 NUST MISIS, 119049, Moscow, Russia.

 

For contacts:

A.A. Chumakov, e-mail: aachumakov@misis.ru.

Bibliography:

1. Schuster K., Furche M., Shao H., Hesser J., Hertzsch J.-M., Gräsle W., Rebscher D. Understanding the evolution of nuclear waste repositories by performing appropriate experiments — selected investigations at Mont Terri rock laboratory. Advances in Geosciences. 2019, vol. 49, pp. 175—186. DOI: 10.5194/adgeo-49-175-2019.

2. Kim J. S., Kwon S. K., Sanchez M., Cho G. C. Geological storage of high level nuclear waste. KSCE Journal of Civil Engineering. 2011, vol. 15, pp. 721—737. DOI: 10.1007/s12205-011-0012-8.

3. Bossart P., Bernier F., Birkholzer J., Bruggerman C., Connoly P., Dewonck S., Fukaya M., Herfort M., Jensen M., Matray J., Mayor J., Moeri A., Oyama T., Schuster K., Shigeta N., Vietor T., Wieczorek K. Mont Terri rock laboratory, 20 years of research: introduction, site characteristics and overview of experiments. Swiss Journal of Geosciences. 2017, vol. 110, pp. 3—22. DOI: 10.1007/s00015-016-0236-1.

4. Morozov O. A., Rastorguev A. V., Neuvazhaev G. D. Assessing the State of the Geological Environment at the Yeniseyskiy Site (Krasnoyarsk Region). Radioactive waste. 2019, no. 4(9), pp. 46—62. [In Russ]. DOI: 10.25283/2587-9707-2019-4-46-62.

5. Saveleva E. A. International cooperation in radioactive waste disposal in crystalline rocks (crystalline club). Radioactive waste. 2019, no. 2(7), pp. 58—64. [In Russ]. DOI: 10.25283/2587-97072019-2-58-64.

6. Rumynin V. G. Experience of studying the clay masses and crystalline core-areas as geological environment for RW final isolation. Radioactive waste. 2017, no. 1(1), pp. 44—55. [In Russ].

7. Zhukov V. S., Kuzmin Y. O. The influence of fracturing of the rocks and model materials on P-wave propagation velocity: Experimental studies. Fizika Zemli. 2020, no. 4, pp. 39—50. [In Russ]. DOI: 10.31857/S0002333720040109.

8. Kuznetsov Yu. I. Acoustic logging as a possible method for studying rock fracturing. Karotazhnik. 2017, no. 2(272), pp. 95—107. [In Russ].

9. Averin A. P. Investigation of attenuation parameters during ultrasound observations. MIAB. Mining Inf. Anal. Bull. 2004, no. 10, pp. 66—70. [In Russ].

10. Dolgirev S. S., Kirichenko YU. V. New approaches to calculating the permeability of fractured zones and reservoirs of the fractured-cavernous type. Karotazhnik. 2018, no. 6(288), pp. 85—93. [In Russ].

11. Schuster K., Amann F., Yong S., Bossart P., Connolly P. High-resolution mini-seismic methods applied in the Mont Terri rock laboratory. Mont Terri Rock Laboratory, 20 Years. 2017, pp. 215—233. DOI: 10.1007/978-3-319-70458-6_11.

12. Schuster K. Mini-Seismic Methods for the in-situ characterization of clay rocks—Examples from URL Meuse/Haute-Marne (France) and HADES URF (Belgium). Geomechanics for Energy and the Environment. 2019, vol. 17, pp. 16—28. DOI: 10.1016/j.gete.2018.09.005.

13. Bayuk I. O., Ryzhkov V. I. Determination of the parameters of cracks and pores of carbonate reservoirs according to wave acoustic logging. Seismic technologies. 2010, no. 3, pp. 32—42. [In Russ].

14. Gik L. D. Methods for studying cracks and pores of rocks based on acoustic logging data. Physical Mesomechanics. 2008, vol. 11, no. 4, pp. 67—73. [In Russ].

15. Zaharov V. N., Averin A. P. Mechanisms of attenuation of wave processes in ultrasonic observations. MIAB. Mining Inf. Anal. Bull. 2005, no. 7, pp. 95—100. [In Russ].

16. Savich A. I., Koptev V. I., Nikitin V. N., YAshchenko Z. G. Seysmoakusticheskie metody izucheniya massivov skal'nykh porod [Seismoacoustic methods for studying rock massifs], Moscow, Nedra, 1969, 239 p.

17. Gubaidullin A. A., Boldyreva O. Y., Dudko D. N. Velocity and attenuation of linear waves in porous media saturated with gas and its hydrate. Journal of Applied Mechanics and Technical Physics. 2022, vol. 63, pp. 599—605. DOI: 10.1134/S002189442204006X.

18. Voznesenskii A. S., Krasilov M. N., Kutkin Y. O., Tavostin M. N. Reliability increasing of an estimation of rocks strength by non-destructive methods of acoustic testing due to additional informative parameters. The Minerals, Metals & Materials Series. 2019, pp. 411—423. DOI: 10.1007/978-3030-05749-7_41.

19. Nikolenko P. V., Zaitsev M. G. Effect of discontinuities on elastic wave velocities in high-stress rock samples: Experimental research using ultrasonic interferometry. Journal of Mining Science. 2022, vol. 58, pp. 936—944. DOI: 10.1134/S1062739122060084.

20. Chou C.-P., Hannaford B. Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Transactions on Robotics and Automation. 1996, vol. 12, no. 1, pp. 90—102. DOI: 10. 1109/70.481753.

21. Soleymani R., Khajehsaeid H. A mechanical model for McKibben pneumatic artificial muscles based on limiting chain extensibility and 3D application of the network alteration theories. International Journal of Solids and Structures. 2020, vol. 202, pp. 620—630. DOI: 10.1016/j.ijsolstr.2020.06.036.

22. Tianyang Li, Zizhen Wang, Yu Jeffrey Gu, Ruihe Wang, Yuzhong Wang Experimental study of fracture structure effects on acoustic logging data using a synthetic borehole model. Journal of Petroleum Science and Engineering. 2019, vol. 183, article 106433. DOI: 10.1016/j.petrol.2019.106433.

23. Nikolenko P. V., Zaitsev M. G. Surface roughness estimation and rock type identification by ultrasonic and optical techniques. MIAB. Mining Inf. Anal. Bull. 2022, no. 3, pp. 5—15. [In Russ]. DOI: 10.25018/0236_1493_2022_3_0_5.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.