Monitoring and assessment of the negative impact of technogenic massives of the mineral and raw complex

The article presents the results of studies of the transformation of the technogenic massif of the mineral resource complex. A thermal imaging survey of storage facilities was carried out to determine drilling sites, take samples, measure soil temperature and analyze the composition of the gas mixture. It was found that the temperature of the soils in some places exceeded 200 °C, which indicates the occurrence of self-heating processes in the layers of the massif. Evaluation of the gas mixture showed the presence of combustion products in the composition. Laboratory studies of the selected samples were carried out at the St. Petersburg Mining University. The presence in the composition of such oxides as SiO2, CaO, Fe2O3, MgO, Al2O3 and MnO has been established. The research results testify to the great heterogeneity of the material and indicate the possibility of silicate, calcareous and sulfide decomposition. The mass loss during the calcination of the material, the content of carbon and hydrogen were determined. The obtained values indicate the presence of residues of the coal charge. This explains the long-term maintenance of the temperature in the layers, since decompaction occurred during the decomposition process, and oxygen was supplied to the carbon-containing materials.

Keywords: technogenic massifs, deformations, blast-furnace slag, transformation, silicate decay, calcareous decay, sulfide decay, endogenous fires, pyrolysis, slag resistance to decay.
For citation:

Pashkevich M. A., Kulikova Yu. A. Monitoring and assessment of the negative impact of technogenic massives of the mineral and raw complex. MIAB. Mining Inf. Anal. Bull. 2023;(9-1):231-247. [In Russ]. DOI: 10.25018/0236_1493_2023_91_0_231.

Acknowledgements:
Issue number: 9
Year: 2023
Page number: 231-247
ISBN: 0236-1493
UDK: 504.052:504.064.36
DOI: 10.25018/0236_1493_2023_91_0_231
Article receipt date: 02.05.2023
Date of review receipt: 02.06.2023
Date of the editorial board′s decision on the article′s publishing: 10.08.2023
About authors:

M.A. Pashkevich1, Dr. Sci. (Eng.), Professor, Head of Chair, e-mail: mpash@spmi.ru, ORCID ID: 0000-0001-7020-8219,
Yu.A. Kulikova1, Graduate Student, e-mail: yuliyakulikova1997@mail.ru, ORCID ID: 0000-0002-6205-5328,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

Yu.A. Kulikova, e-mail: yuliyakulikova1997@mail.ru.

Bibliography:

1. Skobelev D. O., Marev V. A., Shubov L. Y., Ivankov S. I., Doronkina I. G. Wastes of the mining and metallurgy industry: the systematization of the technological decision of the ecological tasks, Part I. Ecological Systems and Devices. 2018, no. 12, pp. 29—37. [In Russ]. DOI: 10.25791/esip.12.2018.305.

2. Novoselov A. L., Petrov I. V. Modelling utilization of secondary mineral resources. Gornyi Zhurnal. 2019, no. 7, pp. 80—84. [In Russ]. DOI: 10.17580/gzh.2019.07.06.

3. Sakhapova T. S., Baranova K. O., Khusnutdinov M. I., Tikhonov V. A. Enterprise waste management practices: implementing a waste management system. Russian Mining Industry Journal. 2021, no. 5, pp. 94—98. [In Russ]. DOI: 10.30686/1609-9192-2021-5-94-98.

4. Katunin V. V., Zinov’eva N. G., Ivanova I. M., Petrakova T. M. Basic indices of russian steel industry operation in 2019. Ferrous metallurgy. Bulletin of scientific, technical and economic information. 2020, vol. 76, no. 4, pp. 309—334. [In Russ]. DOI: 10.32339/0135-5910-2020-4-309-334.

5. Gilmundinov V. M., Tagaeva T. O., Boxler A. I. Analysis and forecasting of waste management processes in the Russian Federation. Problemy prognozirovaniya. 2020, no. 1 (178), pp. 126—134. [In Russ].

6. Oge M., Ozkan D., Celik M. B., Sabri G. M., Cahit K. A. An overview of utilization of blast furnace and steelmaking slag in various applications. Materials Today: Proceedings. 2019, vol. 11, pp. 516—525. DOI: 10.1016/j.matpr.2019.01.023.

7. Riley A. L., MacDonald J. M., Burke I. T., Renforth P., Jarvis A. P., Hudson-Edwards K. A., McKie J., Mayes W. M. Legacy iron and steel wastes in the UK: Extent, resource potential, and management futures. Journal of Geochemical Exploration. 2020, vol. 219, pp. 1—11. DOI: 10.1016/j.gexplo.2020.106630.

8. Sinitsyn N. N., Zapatrina N. V., Dontsova Yu. V. Mathematical model for predicting heat exchange of a single blast of furnace slag droplet in unsteady motion in a counter gas flow. Bulletin of Voronezh state technical university. 2022, vol. 18, no. 3, pp. 30—38. [In Russ]. DOI: 10.36622/VSTU.2022.18.3.003.

9. Belskii S. S., Zaitseva A. A., Tyutrin A. A., Ismoilov Z. Z., Baranov A. N., Sokolnikova Yu. V. Current state of steelmaking slag processing. Proceedings of Irkutsk State Technical University. 2021, no. 6 (161), pp. 782—794. [In Russ]. DOI: 10.21285/1814-3520-2021-6-782-794.

10. Filonenko A. V. Analysis of modern technologies for processing blast-furnace slag. Ekologiya i promyshlennost'. 2018, no. 3-4, pp. 91—104. [In Russ].

11. Parpiev D. B., Turgunboev O. S., Sklyar V. A. Solution of the problem of hydrogen sulfide emissions when cooling blast production slag with water by adding sodium hydrocarbonate. Alleya nauki. 2019, vol. 3, no. 1, pp. 826—831. [In Russ].

12. Nureev R. R., Pashkevich M. A., Kharko P. A. Assessment of the impact of copper ore enrichment waste on surface and groundwater. Geology and geophysics of Russian South. 2022, vol. 12, no. 4, pp. 169—179. [In Russ]. DOI: 10.46698/VNC.2022.37.95.013.

13. Sarapulova G. I. Geochemical approach in assessing the technogenic impact on soils. Journal of Mining Institute. 2020, vol. 243, pp. 388—392. [In Russ]. DOI: 10.31897/PMI.2020.3.388.

14. Voronich S. S., Roeva N. N., Zajcev D. A., Ryabinkina V. D., Khlopaev A. G., Khusainov I. R. Organization of observations of atmospheric air quality taking into account the requirements of the legislation of the Russian Federation. Regional environmental issues. 2022, no. 2, pp. 38—42. [In Russ]. DOI: 10.24412/1728-323X-2022-2-38-42.

15. Lebedev A. B., Utkov V. A., Bazhin V. Yu. Use of red mud as a modifier in granulation of metallurgical slags. Proceedings of Irkutsk State Technical University. 2019, vol. 23, no. 1 (144), pp. 158—168. [In Russ]. DOI: 10.21285/1814-3520-2019-1-158-168.

16. Corrigan F. Ten thermal imagers for drons and how thermal vision shoot works. Avtomatizatsiya i IT v energetike. 2020, no. 1, pp. 14—24. [In Russ].

17. Duryagin V., Nguyen Van T., Onegov N., Shamsutdinova G. Investigation of the selectivity of the water shutoff technology. Energies. 2023, vol. 16, no. 1, pp. 1—16. DOI: 10.3390/ en16010366.

18. Bazhin V. Yu., Kuskov V. B., Kuskova Ya. V. Problems of using unclaimed coal and other carbon-containing materials as energy briquettes. Ugol'. 2019, no. 4 (1117), pp. 50—54. [In Russ]. DOI: 10.18796/0041-5790-2019-4-50-54.

19. Chukaeva M. A., Matveeva V. A., Sverchkov I. P. Complex processing of high-carbon ash and slag waste. Journal of Mining Institute. 2022, vol. 253, pp. 97—104. [In Russ]. DOI: 10.31897/PMI.2022.5.

20. Zhai X., Ge H., Shu C., Obracaj D., Wang K., Bin L. Effect of the heating rate on the spontaneous combustion characteristics and exothermic phenomena of weakly caking coal at the low temperature oxidation stage. Fuel. 2020, vol. 268, pp. 1—8. DOI: 10.1016/j.fuel.2020.117327.

21. Song Y., Yang S., Hu X., Song W., Sang N., Cai J., Xu Q. Prediction of gas and coal spontaneous combustion coexisting disaster through the chaotic characteristic analysis of gas indexes in goaf gas extraction. Process Safety and Environmental Protection. 2019, vol. 129, pp. 8—16. DOI: 10.1016/j.psep.2019.06.013.

22. Rodionov V. A., Tursenev S. A., Skripnik I. L., Ksenofontov Y. G. Results of the study of kinetic parameters of spontaneous combustion of coal dust. Journal of Mining Institute. 2020, vol. 246, pp. 617—622. [In Russ]. DOI: 10.31897/PMI.2020.6.3.

23. Gabdulkhakov R. R., Rudko V. A., Povarov V. G., Ugolkov V. L., Pyagay I. N., Smyshlyaeva K. I. Technology of petroleum needle coke production in processing of decantoil with the use of polystyrene as a polymeric mesogen additive. ACS omega. 2021, vol. 6, no. 30, pp. 19995—20005. DOI: 10.1021/acsomega.1c02985.

24. Daeid N. N. Chemistry of fire. Encyclopedia of Forensic Sciences, 3rd edition. 2023, vol. 1, pp. 530—534. DOI: 10.1016/B978-0-12-823677-2.00042-8.

25. Filatova Yu. A., Mochalova T. A. Research on chemical self-ignition process as causes of fire. Fire and emergency safety. 2019, no. 1(12), pp. 123—127. [In Russ].

26. Sverchkov I. P., Gembitskaya I. M., Povarov V. G., Chukaeva M. A. Method of reference samples preparation for X-ray fluorescence analysis. Talanta. 2023, vol. 252, pp. 1—8. DOI: 10.1016/j.talanta.2022.123820.

27. Talapaneni T., Chaturvedi V. Proposing a suitable slag composition by estimating the fusion behavior, viscosity and desulphurization ability for blast furnaces running with high alumina. Materials Today: Proceedings. 2022, vol. 67, no. 4, pp. 558—565. DOI: 10.1016/j.matpr.2022.07.452.

28. Khobotova E. B., Ignatenko M. I., Storchak O. G., Kalyuzhnaya Yu. S., Graivoronskaya I. V. Mineral composition of dump blast furnace slag. Izvestiya. Ferrous Metallurgy. 2019, vol. 62, no. 10, pp. 774—781. [In Russ]. DOI: 10.17073/0368-0797-2019-10-774-781.

29. Atroshchenko Yu. M., Nikishina M. B., Simonov R. V. Study of the strength characteristics of building composites using converter slags. Endless light in science. 2022, no. 5(5), pp. 161—165. [In Russ].

30. Kozlov V. V., Shevchik A. P., Suvorov S. A., Ivanov A. V., Arbuzova N. V., Pogodina К. S. Estimated and experimental determination of the phase composition of out-of-furnace steel processing slags. Novye ogneupory. 2019, no. 9, pp. 46—49. [In Russ]. DOI: 10.17073/1683-45182019-9-46-49.

31. Babenko А. А., Smirnov L. А., Protopopov Е. V., Upolovnikova A. G., Smetannikov А. N. Fundamental studies of physicochemical properties of environmentally friendly fluorine-free slags and their use in ladle steel industry. Izvestiya. Ferrous Metallurgy. 2022, vol. 65, no. 6, pp. 406—412. [In Russ]. DOI: 10.17073/0368-0797-2022-6-406-412.

32. Savchenko E. A., Busel A. V. Method for determining the silicate decomposition of slag of the current production of the Belarusian Metallurgical Plant for use in asphalt concrete. Stroitel'stvo i arkhitektura: materialy XI Mezhdunarodnogo nauchno-metodicheskogo mezhvuzovskogo seminara «Perspektivy razvitiya novykh tekhnologiy v stroitel'stve i podgotovke inzhenernykh kadrov Respubliki Belarus'» [Construction and architecture: materials of the XI International Scientific and Methodological interuniversity seminar «Prospects for the development of new technologies in construction and training of engineering personnel of the Republic of Belarus»], Brest, 2004, pp. 256—258. [In Russ].

33. Panova V. F., Panov S. A., Kambalina I. V. Aggregates and cements on the basis of secondary mineral resources. Sholom-Aleichem Priamursky State University Bulletin. 2016, no. 1(22), pp. 72—77. [In Russ].

34. Podolsky V. P., Kukina O. B., Sleptsova O. V. The analysis of chemical and mineralogical composition of steelmaking converter slag dump. Scientific Herald of the Voronezh State University of Architecture and Civil Engineering. Series: Physico-chemical problems and high technologies of building materials science. 2014, no. 1, pp. 126—130. [In Russ].

35. Bodyakov A. N., Bugryashov D. V. Actual problems of metallurgical slags. Obrazovanie. Nauka. Proizvodstvo. 2021, pp. 1016—1020. [In Russ].

36. Urazbaeva S. E. Zhabaeva M. U., Abishev R. S., Kraus T. V. Production of a pilot batch of construction materials and products based on industrial waste. Actual scientific research in the modern world. 2020, no. 2-2, pp. 102—106. [In Russ].

37. Chubarov V. М., Finkelshtein А. L., Amirzhanov A. A. X-ray fluorescence determination of FeO/Fe₂O₃tot ratio in iron ores using K-series emission lines of X-ray fluorescence spectrum. Analitika i kontrol. 2009, no. 3, pp. 141—146. [In Russ].

38. Petrova T. A., Rudzisha E. Utilization of sewage sludge as an ameliorant for reclamation of technogenically disturbed lands. Journal of Mining Institute. 2021, vol. 251, pp. 767—776. [In Russ]. DOI: 10.31897/PMI.2021.5.16.

39. Korshunov G. I., Spitsyn A. A., Bazhenova V. A. Development of the method for reducing the release of respirable dust fraction into the mine environment due to the reclamation of dusty sources. Occupational Safety in Industry. 2022, no. 6, pp. 27—32. [In Russ]. DOI: 10.24000/0409-2961-2022-6-27-32.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.